Mechanical System For AL-Rehan Hospital

Slides:



Advertisements
Similar presentations
AN-NAJAH NATIONAL UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING.
Advertisements

Five star hotel in Nablus
HVAC 101 The Basics of Heating, Ventilation and Air Conditioning
Heating, Ventilating, and Air-Conditioning (HVAC)
Granulation Project 2 MECHANICAL SYSTEMS IN BUILDINGS IBN SENA HOSPITAL IBN SENA HOSPITAL Prepared by: Abdullah Hasayen Mazin Khalid Moath Ayyash Mohammad.
HVAC: heating, ventilating, and air conditioning this is a thermostat: it sends signals to the heating/cooling system.
AN-NAJAH NATIONAL UNIVERSITY FACULTY OF ENGINEERING DEPARTEMENT OF MECHANICAL ENGINEERING MECHANICAL SYSTEMS OF AL-OYOON HOSPITAL-NABLUS Graduation Project.
HVAC SYSTEM DESIGN Businessmen Club Supervisor: Dr Salameh Abdulfattah
May 2013 Supervisor Ins.RamezKhaldi Luay A. Aghbar ( ) Husni H. Malysha ( ) Mohammad S. Ahmad ( ) Yousif F.Abdi ( )
Greenhouse and Aquaculture Design considerations John W. Lund Geo-Heat Center Oregon Institute of Technology Klamath Falls, OR
1 ISAT Module III: Building Energy Efficiency Topic 6:Stead-State Building Loads z Fabric Loss z Ventilation Loss z Environmental Temperature z Steady-State.
HVAC 7ab CNST 305 Environmental Systems 1 Dr. Berryman
PROJECT NAME: “Mechanical System for school of optical” (An-Najah university College) Prep ared by: Abdulla Alawneh Islam Salahat Mohammed Jaber Majdi.
The students: Mohammad Shabaro ( ) Mahmoud Mousa ( ) Yosri Asfour ( ) Supervisor: Dr. Iyad Assaf 1.
Heat Loss & Gain Calculations 1. How Heat Moves in Homes Conduction is the transfer of heat through solid objects, such as the ceilings, walls, and floors.
Heating and Air Conditioning I Principles of Heating, Ventilating and Air Conditioning R.H. Howell, H.J. Sauer, and W.J. Coad ASHRAE, 2005 basic textbook/reference.
HVAC523 Heat Gain. Heat First law of thermal dynamics states that HEAT TRAVELS FROM HOT TO COLD. 95 degree outside air will flow through the building.
Unit 2 Terms & Definitions.  Legal requirements designed to protect the public by providing guidelines for structural, electrical, plumbing, and mechanical.
Pumps and Lift Stations. Background Fluid Moving Equipment Fluids are moved through flow systems using pumps, fans, blowers, and compressors. Such devices.
Ductwork Systems and Supply Arch 432. What You Need To Know Become familiar with the materials sizing ductwork Understand sizing units.
Prepared by : Hashem Ihasn Janajreh Mohammad Abu Sarah Sari Khaled Sobeh Ahmad Medhat Attiyah Supervisor : Dr. Iyad.
Drugs Addicts Rehabilitation Center
Prepared by : Ameed mahmoud qzaih Mohammad mustafa yaseen Samer abdelrazaq khanfar Supervisor : Dr. Eyad Assaf.
Prepared by : Abd Aljabbar Rabaya Ammar Salloum Sameh Shawahni Supervisor : Dr. Eyad Assaf 1.
HVACR416 - Design Heat Loss / Heat Gain Part 1. Why? The primary function of Air Conditioning is to maintain conditions that are… o Conductive to human.
Graduation Project Mechanical system for Building of_ al Kuwait Surgery Specialized Hospital.
By : Bara Thaher Mohammad Sameer Osama Joma’a Supervisor : Dr Sameh Mona Climate Responsive Design For Administrative Building In different climate zones.
Architectural Engineering Senior Thesis Mechanical System Redesign Saint Joseph Medical Center Chris Nicolais.
Section 3 Using Heat.
An-Najah National University Faculty of Engineering Building Engineering Department Graduation Project – 2 Integrated Design for Hotel Prepared By: Ahmad.
VENTILATION AND FENESTRATION
Technical Seminar on Application and Technical Specification June 2016
Heat transfer Steady state conditions not for dynamic systems in buildings through walls, roofs, floors, windows, doors building structures and U-values.
Under floor heating Designing underfloor heating (UFH) system must always comply with the system suppliers instructions.
Domestic Hot Water Recirculation Design
}السلام عليكم ورحمة الله وبركاته{
An-Najah National University Faculty Of Engineering
Plumbing system fundamental and design course
An-Najah National University
An-Najah National University Secondary School Design
Under floor Heating Graduation Project submitted By: Adli Mosleh
THERMAL LOADING OF BUILDINGS
RESIDENTIAL HVAC (HEAT LOSS & GAIN)
Studying Geothermal Heat Pump in Palestine
Redesigning of a Primary school
PROJECT NAME: “Mechanical System for school of optical” (An-Najah university College) Prepared by: Abdulla Alawneh Islam Salahat Mohammed.
A comprehensive design of Dorms For Nursing College
Environmental Thermal Engineering
CONFIDENTIAL Technical Seminar on Application and Technical Specification 21 June 2016 Rezza Arif Bin Mustapa Kamal Senior Engineer Project And Application.
HVAC SYSTEM DESIGN ALMAQASED HOSPITAL
Heat Loss and Gain Heat Transfer Winter Heat Loss Summer Heat Gain
Al-Najah National University Mechanical engineering department
Conduction Cooling Loads
Electrical Gas Plumbing Heating & Cooling
Graduation Project – 2 Mini-Mall
Pumps and Lift Stations
______________ Combustion Engine
Heat Loss and Gain Heat Loss and Gain
Maintenance at ALBA facility: Strategy for the conventional services
FBE03: Building Construction & Science
Why we need to calculate heating load ?
Lecture Objectives Finish the cooling load example
Lecture Objectives Psychrometrics Define Heating and Cooling Loads
Objectives Review heating and cooling load calculation
PROJECT NAME: HVAC AND MECHANICAL SYSTEMS DESIGN
Lecture Objectives Learn about Cooling Load Calculation
Mechanical Systems Design for Al-Bahrain Hospital
Mechanical Systems For Al-Zakah Hospital
HEAT EXCHANGE IN BUILDINGS. TERMINOLOGIES Thermal conductivity: is the rate of heat flow through a unit area of unit thickness of the material for a unit.
Presentation transcript:

Mechanical System For AL-Rehan Hospital Supervisor Students Dr. EYAD ASSAF Muhammad Shalan Muhammad Jitan JehaD Odeha JehaD Zuhd

Objective The objective of this project is to design Conventional (HVAC) System (Fan coil units with chiller and Boiler ) for AL-Rehan Hospital. In addition with all recommended mechanical systems that should contain like (potable water, drainage, medical gases and fire fighting) systems.

HVAC HVAC (heating, Ventilation, and Air conditioning) is the technology of indoor and automotive environmental comfort. HVAC system design is a major sub discipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Also the mechanical systems are to be introduced in our research including potable, drainage, firefighting and medical gases.

Location Building Description Country: Palestine . City: Ramallah Region: Dahyet Al-Rehan. Elevation: 800 m above sea level. Latitude: 32 N. Wind’s speed in Ramallah is above 5 m/s.

Al-Rehan Hospital consist of tenth floor ,four Basement Floor , Ground Floor and Five Up Floor and each Floor has approximately 1500 m^2

Inside and Outside Design Conditions Parameter Tin To Tun Tg Φin Φout Win Wout Winter 22 4.7 13 9.7 50% 70% 8.4 3.9 Summer 24 30 28 29 52% 13.7

Overall Heat Transfer coefficient,Uoverall Overall heat transfer coefficient depends on the construction of the unit. To find the overall heat transfer coefficient , the construction was taking in consideration because Uoverall control with the quantity of losses by wall , ceiling , ground , windows and doors. Uoverall is given by: U= 1/Rtot R tot = Ri + R + Ro R= ∑ x/K

External walls construction composition thickness K(w/m.C) R th firm stone 0.1 2.2 0.0455 concrete ( light ) 1.75 0.0571 insulation (polystyrene) 0.03 0.04 0.7500 cement brick(air gap) 0.72 0.1389 cement plaster 0.02 1.2 0.0167 sum 0.35   1.0082 Ri 0.12 Ro Ri = 0.12 m2.C\W Ro= 0.03 m2.C\W Rtot= Ri+Rw+Ro Rtot=0.12+1.0082+0.03 =1.18814 (m^2).C/W U=0.8634 W/(m^2).C

Internal walls construction Material Thickness (m) Thermal conductivity "K"(W/m.C’’) Thermal resistance "R" (m2.C/W) Plaster 0.02 1.2 0.01666 Block 0.1 0.72 0.13889 Sum 0.14 0.17221 Ri = 0.12 m2.C\W Ro= 0.03 m2.C\W Rtot= Ri+Rw+Ro Rtot=0.12+0.17221+0.03 =0.41221 (m^2).C/W U=2.4259 W/(m^2).C

insulation (polystyrene) Ceiling Construction composition thickness K(w/m.c) R th asphalt 0.02 0.8 0.0250 concrete ( light ) 0.05 1.75 0.0286 insulation (polystyrene) 0.03 0.04 0.7500 0.0171 cement brick(air gap) 0.17 0.72 0.2361 cement plaster 1.2 0.0167 sum 0.32   1.0735 Ri 0.1 Ro Ri = 0.12 m2.C\W Ro= 0.03 m2.C\W Rtot= Ri+Rw+Ro Rtot=0.12+0.17221+0.03 =0.41221 (m^2).C/W U=2.4259 W/(m^2).C

Windows and Doors U overall for windows and doors taken directly from energy efficient building code as follow: Windows double glasses with aluminum material type, wind speed more than 5 m/s Uwindow = 3.5 W/m2.C. Doors with wood material type without storm door , wind velocity more than 5 m/s Udoor = 2.4 W/m2.C

Overall heat transfer coefficient (w/m2.k) Summary The value of the overall heat transfer coefficient for each element construction Type Overall heat transfer coefficient (w/m2.k) External Walls 0.8634 Internal Walls 2.4259 Ceiling 0.83788 Windows 3.5 Doors 2.4

Heating Load Calculation PROCEDURES Select inside design condition Temperature, relative humidity(Tin, Φin). Select outside design condition Temperature, relative humidity(Tout, Φout). Select unconditioned temperature(Tun). Find over all heat transfer coefficient Uo for wall, ceiling, floor, door, windows, below grade. Find area of wall, ceiling, floor, door, windows, below grade. Find Qs conduction. Find V inf , V vent . Find Qs, QL vent, inf. Find Q domestic hot water. Find Q boiler.

EQUATIONS Q = U* A* ( Ti - To ) Vvent = n * value of ventilation Vinf = (ACH * inside volume *1000) /3600 Qs)vent , inf= 1.2 Vvent,inf*(Ti-To) Ql)vent , inf = 3 Vvent,inf*(Wi-Wo). Qw = (Mw *cp*(Th – Tc ))/∆t Unconditioned Temperature In summer Tun = Ti+2/3*( To - Ti ) Unconditioned Temperature In winter Tun = Ti+0.5*( Ti - To )

Sample Calculation Single Room ( 1 ) Specification Area of outside wall = 14 m² Area of unconditioned wall = 32.2 m² Area of window is = 1.8 m² Ceiling area = 18.6 m²

Conduction heat gain Qs = U*A*∆T Q.ext = 0.8634*14*17.3 = 209.11548 Watt. Q. un = 2.4259*32.2*8.65 = 675.686 Watt. Q cel. = 0.8379*18.6*17.3 = 278.01 Watt. Qs.cond = Q.ext + Q.un + Q.cilling Qs.cond= 1268.5 Watt. Ventilation and Infiltration heat gain Q.s.ven =1.2*5*18.6 *17.3 = 1930.068 Watt Q.tot = 1268.5 + 1930 = 3199.18 Watt

Room Qs, cond. (W) Qs, vent. (W) Q tot ( W ) Single Room (1) 1268.500 1930.68 3199.180 Single Room (2) 1031.932 1972.2 3004.132 Single Room (3) 1133.207 2179.8 3313.007 Single Room (4) 1322.810 1951.44 3274.250 Single Room (5) 855.860 1868.4 2724.260 Single Room (6) 1015.360 1837.26 2852.620 Single Room (7) 1025.506 1909.92 2935.426 Single Room (8) 1141.954 1764.6 2906.554 Single Room (9) 1369.834 3217.8 4587.634 Single Room (10) 994.378 1349.4 2343.778 Single Room (11) 979.446 2366.64 3346.086 Double Room(1) 1504.825 2449.68 3954.505 Double Room(2) 1092.185 2460.06 3552.245 Double Room(3) 825.418 2439.3 3264.718 Double Room(4) 828.317 3288.377 Double Room(5) Double Room(6) 915.001 3364.681 Double Room(7) 1151.699 2003.34 3155.039 Double Room(8) 1411.993 3591.793 Double Room(9) 2192.196 2875.26 5067.456 Double Room(10) 1197.415 4072.675 Double Room(11) Double Room(12) Double Room(13) Double Room(14) Double Room(15) Double Room(16) Main Carador (1) 11821.867 14001.66718 Main Carador (2) 7002.546 9861 16863.54555 Small Corridor 10697.957 11781.3 1083.343404 Doctor Office(1) 1193.740 830.4 2024.139877 Doctor Office (2) 255.751 1557 1301.248564 Lounge 13496.776 1141.8 14638.57615 Lounge (1) 9479.012 11729.4 2250.388031 Male Change 152.639 1671.18 1823.818852 Female Change 1182.815 1245.6 2428.41484 Nurse Station 34.634 1522.36566 Waiting 14371.783 15617.38301 Suite Room 6895.487 11418 4522.512811 Clean & Dirty UT. 1080.020 3363.12 2283.099753 Sum 127492.200 129495.540

Total Heating Loads

Boiler Selection Boiler specification Domestic hot water load 145.03 KW Heating Load 834.4 KW Boiler Capacity = 1077.37 KW   Annual fuel consumption of diesel is 154.86 cubic meter per year .

From Obrien boilers Company Catalogue we chose REX K120 F with capacity of 1200 KW

Pump Specification

Pump Selection Required pump for boiler have the following specification pump head 149.75PSI . pump flow rate 20.14 L/s. From WILO catalog we chose NL 50/315-45-2-12-50Hz series .

Expansion Tank From Wessels Company Catalogue depending on pump flow rate(20.17 L/s) (319.7 GPM )we select TXA 1400

Coaling Load Calculation EQUATIONS For Ceiling: Q=U*A*(CLTD)corr (CLTD)corr = (CLTD + LM) K + (25.5 – Ti )+ (To – 29.4) CLTD: cooling load factor K:color factor K=1 dark color K=0.5 light color For Walls: Q=U*A*(CLTD)corr (CLTD)corr =(CLTD + LM) K + (25.5 – Ti )+ (To – 29.4) K=1 dark color K=0.83 medium color K=0.5 light color

For Glass Heat transmitted through glass Q=A*(SHG)*(SC)*(CLF) SHG: solar heat gain SC: shading coefficient CLF: cooling load factor Convection heat gain Q=U*A*(CLTD)corr For people Qs=qs*n*CLF qL=qL*n Qs,QL: sensible and latent heat gain qs,qL: sensible and latent gains per person n: number of people CLF: cooling load factor For lighting Qs=W*CLF W:lighting capacity: (watts) For equipments Qs=qs*CLF QL=qL

Sample Calculations For Single Room (1) Area of outside wall = 14 m² Area of unconditioned wall = 32.2 m² Area of window is = 1.8 m² Ceiling area = 18.6 m² Sensible and latent heat gain for one person from table (A-16). Qs = 71.5 W QL= 57 W Sensible heat gain Qs in, wall = U x A x (CLTD) correct = 90.58 W Transmission heat gain (window) = 51.86 W Convection heat gain = U*A*CLTD.corr = 63.63 W

Heat load due to equipment Convection heat gain U*A*CLTDcorr = 63.63 W Load from ventilation and infiltration Qs vent/inf = 1.2*Vvent* ∆t = 1.2*75.8*7.4 = 669.6 W QL vent = 3*Vvent*(Wi-Wo) = 3*75.8*6.5 =1478.7 W Heat load due to people Qs = qs*n*CLF = 70*1*0.84 = 62.3 W Ql = ql*n = 44*1 = 44 W Heat load due to lighting Qs/l = Aroom*CLF= 279 * 0.85 = 237.15 W Heat load due to equipment Qs = 522 W QL = 0 W Total sensible load ∑Qs = 1826.87 W Total latent load = ∑Ql = 1522.7 W Total load = 3349.3 W

Total heat loss for every room Qs (W) Ql (W) V vent(L/S) total loss (W) Total loss (KW) single Room (1) 1826.592 1522.700 93 3349.292 3.349292192 single Room (2) single Room (3) 2044.952 1697.600 106 3742.552 3.74255162 single Room (4) 2056.090 1729.400 3785.490 3.785489612 single Room (5) 1973.243 3702.643 3.702643136 single Room (6) single Room (7) single Room (8) 1914.915 1586.300 97 3501.215 3.501215208 single Room (9) 2977.166 2556.200 158 5533.366 5.533365593 single Room (10) 1423.985 1077.500 65 2501.485 2.501485446 single Room (11) 2078.175 1872.500 115 3950.675 3.950674551 Double Room(1) 2495.337 1972.150 118.5 4467.487 4.46748684 Double Room(2) 2180.071 1916.500 4096.571 4.096570996 Double Room(3) 2250.171 1996.000 120 4246.171 4.246171331 Double Room(4) 2217.267 1956.250 117.5 4173.517 4.173516713 Double Room(5) 2223.848 1964.200 118 4188.048 4.188047636 Double Room(6) 2239.155 1980.100 119 4219.255 4.219255033 Double Room(7) 1856.390 1646.200 98 3502.590 3.502589527 Double Room(8) 2091.395 1813.150 108.5 3904.545 3.904544581 Double Room(9) 136.5 Double Room(10) 2406.834 2258.350 4665.184 4.665184295 Double Room(11) Double Room(12) Double Room(13) Double Room(14) Double Room(15) Double Room(16) main carador (1) 8525.349356 8212.5 475 16737.849 16.73784936 main carador (2) 10079.85487 9683.25 567.5 19763.105 19.76310487 small corridor 842.7729144 724 40 1566.773 1.566772914 doctor office(1) 905.9443758 942.35 56.5 1848.294 1.848294376 doctor office (2) 1284.654163 1260.35 76.5 2545.004 2.545004163 lounge 8896.114346 9423.5 565 18319.614 18.31961435 lounge (1) 1426.585152 1367.95 80.5 2794.535 2.794535152 male change 1170.207282 1042 60 2212.207 2.212207282 female change 1483.107832 1280.5 75 2763.608 2.763607832 nurse station 1061.858482 2103.858 2.103858482 waiting 10223.29997 9625 550 19848.300 19.84829997 suite room 2850.42717 2619.8 162 5470.227 5.47022717 clean & dirty UT. 1432.41827 1578.35 96.5 3010.768 3.01076827 Sum 79800.756 71924.400 6022 151725.156 151.7251557

FLOOR Q total ( kW ) Mass Flow Rate(L/s) B4 59.1 2.35645933 B3 71.7 2.858851675 B2 157.16 6.266347687 B1 143.42 5.718500797 GF 172.69 6.885566188 1 130 5.183413078 2 152.89 6.096092504 3 116.2 4.633173844 4 5 150.7 6.00877193 SUM 1270.06 50.64035088

Chiller Selection Building Load = 1270.06 kW OR 362.87 T.R From PETRA Company we select APSa 385 – 3S AC1 50 Hz. with 385 Ton. Refrigeration cooling load capacity .

Pump Selection Friction loss = 66.17 PSI Fitting loss = 33.08 PSI Head loss = 50.49 PSI. Pump head = 149.75 PSI Pump Flow rate = 50.64 L/s From WILO catalog we select SCP 150/580HA series.

Pressure Tank Selection From Wessels Company Catalogue depending on Pump flow rate (19.44 L/s) (308 GPM) the suitable pressure tank FXA-1200

Fan Coil Unit For Single Room (1) Cooling Load = 3.35 KW V cir. = 465.17 L/s V c.f.m = 1023.34 CFM From Petra Catalogue we select DCC 20 H/C 4Rows Model

F.C.U # Load (CFM) Model F.C 1 1023.394837 DCC 20 H/C 4Rows F.C 2 F.C 3 1143.55744 F.C 4 1156.677381 F.C 5 1131.36318 F.C 6 F.C 7 F.C 8 1069.815758 F.C 9 1690.750598 F.C 10 764.3427753 DCC 8 H/C 4Rows F.C 11 1207.150557 F.C 12 1365.065423 F.C 13 1251.730027 F.C 14 1297.44124 F.C 15 1275.241218 F.C 16 1279.681222 F.C 17 1289.216816 1070.235689 F.C 19 1193.055289 F.C 20 F.C 21 1425.472979 F.C 22 F.C 23 F.C 24 F.C 25 F.C 26 F.C 27 F.C 28 2557.171429 DCC 30 H/C 4Rows F.C 29 3019.363244 F.C 30 478.7361683 DCC 6 H/C 4Rows F.C 31 564.7566148 F.C 32 777.6401609 F.C 33 1865.886646 F.C 34 853.885741 DCC 10 H/C 4Rows F.C 35 675.9522249 F.C 36 844.4357264 F.C 37 642.8456472 F.C 38 2021.586108 DCC 24 H/C 4Rows F.C 39 1671.458302 919.9569715

Pipe Sizing ( FCU 1) Supply Pipe sizing m = (Qs +Ql.) / (4180*6) m = (1826.6 +1552.7) / (4180*6) = 0.135 L/s Pressure drop assumption 400 pa/m. Preferred size at operating condition is 0.75 in  

SHAFT ( 1 ) F.C.U Heat loss (W) m ( L/s) Friction Size ( in ) F.C 28 A 8368.925 1.69564826 400 2 F.C 12 4467.487 1.36195908 1.5 F.C 1 3349.292 1.18382962 F.C 13 4096.571 1.05028527 F.C 2 0.88694512 1.25 F.C 14 4246.171 0.75340078 F.C 3 3742.552 0.5840957 F.C 15 4173.517 0.43487115 1 F.C 32 2545.004 0.26846299 F.C 16 4188.048 0.16698755 0.75

Duct Sizing ( FCU 1) Qt = 3.35 kw V circulation air = Qt / 1.2 * (Tcir. – Ti) V circulation = 3.35 / (1.2* 10) = 0.465 m3/ s Pressure drop = 0.55 pa / m velocity = 4.1 m / s A = 0.11 m2 D = 0.385 m High = 0.3 m Width = 0.425 m

F.C.U # Load (CFM) HIGHT A - B B - C C - D D - E E - F F - G G - H H - I F.C 1 1023.394837 0.3 0.425 0.275 0.2   F.C 2 F.C 3 1143.55744 0.45 0.325 F.C 4 1156.677381 F.C 5 1131.36318 F.C 6 F.C 7 F.C 8 1069.815758 F.C 9 1690.750598 0.625 0.5 0.375 F.C 10 764.3427753 F.C 11 1207.150557 0.475 0.35 F.C 12 1365.065423 0.525 0.4 F.C 13 1251.730027 F.C 14 1297.44124 F.C 15 1275.241218 F.C 16 1279.681222 F.C 17 1289.216816 1070.235689 F.C 19 1193.055289 F.C 20 F.C 21 1425.472979 0.55 F.C 22 F.C 23 F.C 24 F.C 25 F.C 26 F.C 27 F.C 28 2557.171429 0.875 0.775 0.65 0.25 F.C 29 3019.363244 1.025 0.9 0.53 0.28 F.C 30 478.7361683 0.225 F.C 31 564.7566148 F.C 32 777.6401609 F.C 33 1865.886646 0.675 F.C 34 853.885741 F.C 35 675.9522249 F.C 36 844.4357264 F.C 37 642.8456472 F.C 38 2021.586108 0.725 0.6 F.C 39 1671.458302 919.9569715

Fresh Air Duct For single room ( 1 ) V.vent. = ( L/S/ Area ) * Area Pressure drop = 0.55 pa / m velocity = 3 m / s A = 0.0314 m2 D = 0.2 m High = 0.2 m Width = 0.175 m

SECTION V vent(L/S) SHAFT ( 1 ) PA/M HIGHT WIDTH A - B 1173.5 0.55 0.3 0.875 B - C 936 0.7 C - D 843 0.65 D - E 724.5 0.575 E - F 609.5 0.5 F - G 516.5 0.45 G - H 396.5 0.35 H - I 290.5 0.275 I - J 173 0.2 STATIC PRESSURE PA 13.75

Fresh Air Fan Selection Fan specification Flow rate = 1173.5 L/s Static Pressure = 13.75 pa From Rosenberg RoVent catalog we select DHAD 355-4 series .

Exhaust Air Duct velocity = 2 m / s D = 0.136 m High = 0.2 m V = ( A.C.H *Vin* 1000) / 3600 V = ( 10 * 3.5*3.1*1000 ) / 3600 V = 30 L/s/path. Pressure drop = 0.55 pa / m velocity = 2 m / s D = 0.136 m High = 0.2 m Width = 0.75 m

SECTION V (L/S) PA/M HIGHT WIDTH A - B 210 0.55 0.2 0.325 B - C 180 C - D 150 0.25 D - E 120 0.225 E - F 90 0.175 F - G 60 0.125 G - H 30 0.75 STATIC PRESSURE PA 13.75

Exhaust Fan Selection Fan specification Flow rate = 210( L/s ). Static Pressure = 13.75 pa From Rosenberg RoVent catalog we select DHAD 355-4 series .

Air Handling Unit Selection

For Operation Theaters in the First floor Three O.T have Load of (440.12 CFM). The other have load of (635.86 CFM ). For Operation Theater in the Second floor Operation Theater load of (530.5 CFM) For Operation Theaters in the GF floor Operation Theater load of (217.57 CFM) For Operation Theaters in the B1 floor Operation Theater load of (633.53 CFM)

From PETRA Catalogue the minimum Available AHU Load is 1200 CFM So we select PAH H C 12 C6 H4 X4

Plumbing System Potable Water No. of Fixture units is to be calculated to start sizing using special tables for potable design. For internal network plastic pipes to be used For external network steel pipes to be used

Sample Calculation

SINGLE ROOM (9) + DOUBLE ROOM 16 Space Name ( H.W.S ) F.U ( H.W.R ) F.U ( C.W.S ) F.U SINGLE ROOM (1&2) 12 7.2 22 SINGLE ROOM ( 3 ) 6 3.6 11 SINGLE ROOM (4&5) SINGLE ROOM ( 6 & 7) SINGLE ROOM (9) + DOUBLE ROOM 16 SINGLE ROOM (10) + DOUBLE ROOM ( 7 ) DOUBLE ROOM ( 1 & 2 ) DOUBLE ROOM ( 3 & 4 ) DOUBLE ROOM ( 5 & 6 ) + SUITE 18 10.8 33 DOUBLE ROOM ( 8 & 9 ) DOUBLE ROOM ( 10 & 11 ) DOUBLE ROOM ( 12 & 13 ) DOUBLE ROOM ( 14 & 15 ) WAITING AND LUNGE 1 MAIL CHANGE 16 9.6 26 FEMAIL CHANGE Single Room (11) and Lounge(1)

Section ( H.W.S ( L/S ) SIZE (in) ( H.W.S ) ( H.W.R ) ( L/S ) Riser ( 1 ) MAIN LINE Size ( in ) ITEM TOTAL FIXTURE Flow Rate ( L/s ) SIZE ( in) Cold Water System 77 2.357 1.25 Hot Water System 42 1.724 Hot Water System Return 25.2 1.38 1 Section ( H.W.S ( L/S ) SIZE (in) ( H.W.S ) ( H.W.R ) ( L/S ) SIZE (in) ( H.W.R ) A - B 1.01 1 0.88 B - C 0.68 0.75 0.47 0.5 C - D D - E ( C.W.S ) ( L/S ) SIZE (in) ( C.W.S ) 1.288 0.965

Residual Pressure ( PSI ) FLOOR CWS ( F.U ) HWS ( F.U ) B4 21.5 16.5 B3 93 43 B2 108 48 B1 36.25 12.25 GF 172 21 1 133.5 43.5 2 197 57 3 350 194 4 5 SUM ( F.U ) 1811.25 823.25 FLOW RATE ( L/s ) 19.438 11.5665 SIZE ( IN ) 3.5 TANK SIZE 2.33256 1.38798   Pump Specification Residual Pressure ( PSI ) Friction ( PSI ) 17.64705882 Fitting ( PSI ) 8.823529412 Head ( PSI ) 5.049264706 Total Head ( PSI ) 26.42132353 Flow Rate (L/S )

Pump Selection Cold Water Pump have the following specification : Flow rate 19.438 L/s Pump Head 26.42 PSI From WILO Catalog we chose NL 50/160-5.5-2-12-50Hz series. Tank size 2.33256 Cubic meter for two operating hour per day .

Hot Water Pump have the following specification : Flow rate 11.5665 ( L/s ) Pump Head 26.42 ( PSI ). From WILO Catalog we chose BAC 70/135-3/2-Rseries. Tank size 1.38798 Cubic meter for two operating hour per day .

Pressure Tank Selection From Wessels Company Catalogue depending on Pump flow rate (11.56 L/s) (183.2 GPM) we select TXA 800 .

Expansion Tank Selection From Wessels Company Catalogue depending on Pump flow rate (19.44 L/s) (308 GPM) we select FXA-1200-WG.

Drainage System Number of fixtures is to be determined to start sizing for the stacks and horizontal branches using special tables

Water Closet ( Tank Type ) ITEM SIZE ( IN ) FIXTURE UNIT BATHTUB 1.5 2 FLOOR DRAIN ( 4 ) 4 6 LAVATORY 1.25 1 Water Closet ( Tank Type )

Black Water (W.C) STACK Size Space Name Gray Water F.U Gray Water STACK Size Black Water (W.C) F.U Black Water (W.C) STACK Size SINGLE ROOM (1&2) 24 4 8 SINGLE ROOM ( 3 ) 15 3 SINGLE ROOM (4&5) 18 SINGLE ROOM ( 6 & 7) SINGLE ROOM (9) + DOUBLE ROOM 16 SINGLE ROOM (10) + DOUBLE ROOM ( 7 ) DOUBLE ROOM ( 1 & 2 ) DOUBLE ROOM ( 3 & 4 ) DOUBLE ROOM ( 5 & 6 ) + SUITE 27 12 DOUBLE ROOM ( 8 & 9 ) DOUBLE ROOM ( 10 & 11 ) DOUBLE ROOM ( 12 & 13 ) DOUBLE ROOM ( 14 & 15 ) WAITING AND LUNGE MAIL & Female CHANGE & Single Room (11) & Lounge(1) 81 20 TOTAL FIXTURE 369   124

FLOOR SHAFT 1 ( F.U ) SHAFT 2 ( F.U ) SHAFT 3 ( F.U ) SHAFT 4 ( FU ) B4 B3 12 112 66 36 B2 48 123 83 B1 52 18 GF 30 88 1 90 97 2 70 3 129 89 110 4 191 5 SUM 689 600 695 501 STA CK SIZE ( IN )

BUILDING DRAIN BETWEEN STAK FU SIZE SHAFT 4 & 3 501 6 SHAFT 3 & 2 1196 8 SHAFT 2 & 1 1796 10 DRAIN 2485

Fire Fighting System Landing Valve and Cabinet landing valve 2 ½ “ (NFPA code) cabinet 1 ½ “ (NFPA code) Sprinklers system with heat and smoke detectors .

Landing Valve and Cabinet

Pressure Drop ( PSI/ft ) Path ( ft ) Pressure Drop ( PSI ) Pipe Size ( in ) Flow Rate ( GPM ) Pressure Drop ( PSI/ft ) Path ( ft ) Pressure Drop ( PSI ) 4 1000 0.2 32.8 6.56 750 0.1 82.984 8.2984 500 0.05 318.488 15.9244 2.5 250 0.15 29.52 4.428 Pump Selection   Residual Pressure ( PSI ) 100 Flow Rate ( G.p.m ) 1000 head ( PSI ) 50.49264706 Head ( PSI ) 213.8720871 Friction ( PSI ) 35.2108 Flow Rate ( L/S ) 54.66666667 Fitting ( PSI ) 28.16864 head ( Kpa ) 1473.826015 Total ( PSI )

Pump Selection Pump flow rate 1000 GPM. Pump head 213.87 PSI For electric and diesel pump we select from WILO Company ( NPG 100-315A-110/2 ) series. For Jockey Pump have the following specification Jockey flow rate 100GPM. Jockey head 213.87 PSI. From WILO Company we select TWI 6.18-22-B series .

Pressure Tank Selection From Wessels Company Catalogue depending on Pump flow rate (1000GPM) we select FXA-4000.

Tank Volume Tank Volume = ( 1000*3.78*60)/1000 = 226.8 (Cubic meter ). tank sets beside the building .

Sprinklers

Residual Pressure( PSI ) Combustible Ceiling Covered Area Maximum Distance( m ) Light Hazardous 21 4.6 Residual Pressure( PSI ) Flow Rate ( gpm ) Duration Time ( s ) 15 60 NO. Sprinklers Pipe Size ( in ) 2 1 3 1.25 5 1.5 10 20 2.5 40 65 3.5 100 4 160 275 6

Pressure Drop ( PSI/ft ) NO. Sprinklers Pipe Size ( in ) Q ( gpm) Pressure Drop ( PSI/ft ) Path (ft) Pressure Drop ( PSI) 1 15 0.107 20.664 309.96 3 1.25 45 0.022 14.76 664.2 4 1.5 60 0.173 2.624 157.44 10 2 150 0.279 9.184 1377.6 11 2.5 165 0.142 7.216 1190.64 14 210 0.2 7.544 1584.24 17 255 0.316 5.248 1338.24 20 300 0.427 4.264 1279.2 21 315 0.161 1343.16 36 540 0.33 37.72 20368.8 39 585 0.35 3.28 1918.8 3.5 675 0.37 5.576 3763.8 51 765 0.4 21.484 16435.26 78 1170 0.25 114.8 134316

Residual Pressure ( PSI ) Pump Selection   Residual Pressure ( PSI ) 15 Flow Rate ( gpm ) 1170 head ( PSI ) 50.49264706 200.3978663 Friction ( PSI ) 74.947344 Flow Rate (L/S ) 63.96 Fitting ( PSI ) 59.9578752 head ( Kpa ) 1380.973051 Total ( PSI )

Medical Gases Medical gases systems in hospitals, are essential for supplying piped oxygen, nitrous oxide, nitrogen, carbon dioxide and medical air to various parts of the hospital. These systems are usually highly monitored by various computerized alarm systems.

Pipe Sizing Oxygen. Medical Air. Medical Vaccum.

Allowable Pressure Loss 60 Psig 25 mmHg = 0.5 Psig For shaft 2 Medical Gas Type Medical Air Medical Vaccum Oxygen Typical outlet Flow 1 SCFM Allowable Pressure Loss 60 Psig 25 mmHg = 0.5 Psig Number Of Outlet 12 Longest Path ( m ) 55.4 Equivelent Length ( ft/100 ) 2.73568 Pressure drop ( Psi / 100 ft ) 1.8344 0.18344

Oxygen Medical Air Pipe sizing.

section Number Of Outlet Diversity factor ( % ) Effective SCFM Size ( in ) A - B 1 100 0.5 B - C 2 C - D 3 D - E 4 75 E - F 5 3.75 F - G 6 4.5 G - H 7 5.25 H - I 8 I - J 9 6.75 J - K 10 7.5 K - L 11 8.25 L - M 12 M - N 13 33 4.29 N -O 14 4.62 O - P 15 4.95 P - Q 16 5.28 Q - S 17 5.61 S - T 18 5.94 T - U 19 6.27 U - V 38 12.54 0.75 V - W 57 18.81

Medical Vaccum Pipe sizing

section Number Of Outlet Diversity factor ( % ) Effective SCFM Size ( in ) A - B 1 100 0.75 B - C 2 C - D 3 D - E 4 75 E - F 5 3.75 F - G 6 4.5 G - H 7 5.25 H - I 8 I - J 9 6.75 J - K 10 7.5 K - L 11 8.25 L - M 12 M - N 13 33 4.29 N -O 14 4.62 O - P 15 4.95 P - Q 16 5.28 Q - S 17 5.61 S - T 18 5.94 T - U 19 6.27 U - V 38 12.54 V - W 57 18.81 1.25

Elevator Selection Criteria Type Speed Size High Quantity Applications

Elevator Selection We use the stander size , speed and quantity that used in the hospital From MRL Passenger Lift Range Company with Speed of 1m/s .

Sizing For Patients (bed)Elevator Sizing For Passenger Elevator load Entrance layout Internal Shaft Diminution Door Type Doors Opining (at a height 2000mm) PIT Headroom Kg/person Width (mm) Depth Depth(mm) Height 1600/21 Through () 2400 2850 2PSO automatic 1100 1300 3600 Sizing For Passenger Elevator load Entrance layout Internal Shaft Diminution Door Type Doors Opining (at a height 2000mm) PIT Headroom Kg/person Width (mm) Depth Depth(mm) Height 800/ 10 Single 1750 2050 2PSO automatic 900 1200 3450

Thank YOU