Kaons Propagation Through Nuclei

Slides:



Advertisements
Similar presentations
E : HRS Cross Section Analyses Vincent Sulkosky Massachusetts Institute of Technology GMp Collaboration Meeting September 24 th, 2012.
Advertisements

Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
Proton, Pion and Kaon Transparency Measurements Overview of existing (& new kaon!) transparency data Questions: A-dependent analysis – any improvements.
Count rate estimates from TDR Assuming beam intenisties from previous slide and acc *rec from SIM LH2 case [counts/24h] p [GeV/c] beam momentum Solid.
BONUS (Barely Off-Shell Nucleon Structure) Experiment Update Thia Keppel CTEQ Meeting November 2007.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Zhihong Ye Hampton University Feb. 16 th 2010, APS Meeting, Washington DC Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Backward meson production at CLAS Alex Kubarovsky (RPI/Uconn) Kyungseon Joo (Uconn) Valery Kubarovsky (Jlab) Paul Stoler (RPI) Exclusive Meson Production.
POSTER TEMPLATE BY: D(e,e   p RTPC )X D(e,e   p RTPC p CLAS )X N(e,e   )XD(e,e   p CLAS )X E = 5.3GeV Simulation Procedure.
The angular dependence of the 16 O(e,e’K + ) 16  N and H(e,e’K + )  F. Garibaldi – Jlab December WATERFALL The WATERFALL target: reactions on.
Does a nucleon appears different when inside a nucleus ? Patricia Solvignon Argonne National Laboratory Postdoctoral Research Symposium September 11-12,
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
Rosen07 Two-Photon Exchange Status Update James Johnson Northwestern University & Argonne National Lab For the Rosen07 Collaboration.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Calibration of the new Particle Identification Detector (PID) Tom Jude, Derek Glazier, Dan Watts.
Advisors Dr. Liguang Tang ( Dr. Dipangkar Dutta ( Nuruzzaman ( Nuclear.
Exclusive π 0 electroproduction in the resonance region. Nikolay Markov, Maurizio Ungaro, Kyungseon Joo University of Connecticut Hadron spectroscopy meeting.
E. Penel-NottarisLaboratoire de Physique Subatomique et de Cosmologie de Grenoble 1 July, 7 th, 2004 Quasi-elastic 3 He(e,e’p) experiment (E89-044) at.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
CEBAF The Continuous Electron Beam Accelerating Facility(CEBAF) is the central particle accelerator at JLab. CEBAF is capable of producing electron beams.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
A Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering John Arrington and James Johnson Northwestern University & Argonne.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Proton Charge Form Factor Measurement E. Cisbani INFN Rome – Sanità Group and Italian National Institute of Health 113/Oct/2011E. Cisbani / Proton FF.
Total photoabsorption on quasi free nucleons at 600 – 1500 MeV N.Rudnev, A.Ignatov, A.Lapik, A.Mushkarenkov, V.Nedorezov, A.Turinge for the GRAAL collaboratiion.
Measurement of photons via conversion pairs with PHENIX at RHIC - Torsten Dahms - Stony Brook University HotQuarks 2006 – May 18, 2006.
Hall-C Coincidence Commissioning Experiments E & E Krishna Adhikari Mississippi State University 1 Joint Hall-A & Hall-C Summer meeting.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
Transverse Momentum Dependence of Semi-Inclusive Pion and Kaon Production E : Spokespersons Peter Bosted, Rolf Ent, Hamlet Mkrtchyan 25.5 days.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
L/T separation in the 3 He(e,e’p) reaction at parallel kinematics Freija Descamps Supervisors: Ron Gilman Eric Voutier Co-supervisor: Jean Mougey.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
Georgie Mbianda 1 for the Baryon (E01-002) Collaboration 1 University of the Witwatersrand, Johannesburg Exclusive Electroproduction of π + and η mesons.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
Overview of recent photon beam runs at CLAS CLAS12 European Workshop, Feb , Genoa, Italy Ken Livingston, University of Glasgow Tagged photons.
 4 He(e,e'p)X, April 13 and April 14, 2011, 16 hours Measured P miss at and GeV/c, x b = 1.24, Q 2 = 2 (GeV/c) 2 Extension of SRC 2 body data.
Analysis of    production ► Data taking ► Reaction identification ► Results for double polarization observable F ► Summary Based on data taken in the.
Gleb Fedotov Baryon 2016, Mai FSU, Tallahassee, FL 1 New Results on  v p→  +  - p Cross Sections in the Second and Third Resonance Regions Ralf.
Florida International University, Miami, FL
x>1: Short Range Correlations and “Superfast” Quarks
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
Cross section of the process
Explore the new QCD frontier: strong color fields in nuclei
James Johnson Northwestern University & Argonne National Lab
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Precision Measurement of the Electroproduction of p0 Near Threshold:
Measurement of the Pion Structure Function
from Pion Electroproduction
Nadia Fomin University of Virginia
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Studies of Strange Sea Distribution Functions using Kaons with CLAS12
A Precision Measurement of GEp/GMp with BLAST
Search for f-N Bound State in Jefferson Lab Hall-B
Electroproduction of φ Mesons in CLAS
Wei Luo Lanzhou University 2011 Hall C User Meeting January 14, 2011
The First CEBAF Experiment
High-pT Identified Charged Hadrons in √sNN = 200 GeV Au+Au Collisions
University of Tennessee
Identified Charged Hadron Production at High pT
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
GEp-2γ experiment (E04-019) UPDATE
Presentation transcript:

Kaons Propagation Through Nuclei Nuruzzaman Mississippi State University Medium Energy Physics Group Advisor: Dr.Dipangkar Dutta (http://ra.msstate.edu/~dd285/mep.html)‏ This work is sponsored  by the Department of Energy  Office of Science Grant No.:DE-FG02-07ER41528 Jefferson Lab Hall C Users Meeting 31st January, 2009 1 1 1

Outline Nuclear Transparency Nuclear Transparency with Pions & Kaons Analysis Preliminary Results 2 2 2

Nuclear Transparency Ratio of cross-sections for exclusive processes from nuclei to those from nucleons is termed as Nuclear Transparency = Free (nucleon) cross-section = Nuclear cross-section .˙. T= Aα-1 parameterized as = Experimentally  = 0.72 – 0.78, for p,k, 3 3 3

Outline Nuclear Transparency Nuclear Transparency with Pions & Kaons Analysis Preliminary Results 4 4 4

Transparency Experiment with Pions / Kaons Experiment ran in July `04 and December `04 at Jefferson Lab JLab Experiment E01-107: A(e,e΄ ) Spokespersons : D. Dutta & Rolf Ent Data collected on LH2, LD2, 12C, 63Cu, and 197Au at Pπ of 2.8, 3.2, 3.4, 4.0 and 4.4 (GeV/c) Q2 of 1.1, 2.15, 3.0, 4.0 and 4.7 (GeV/c)2 Out going scatered particle has energy of ~100MeV The experiment was measuring pion transparency, however one  gets kaons along with pions during data collection because kaons fall  within the coincidence window. 5 5 5

Hall C G0 HMS- High Momentum Spectrometer SOS G0 HMS- High Momentum Spectrometer SOS- Short Orbit Spectrometer 6

Outline Nuclear Transparency Nuclear Transparency with Pions & Kaons Analysis Preliminary Results 7 7 7

JLab Experiment E01-107 π K+ p Typical coincidence time spectrum showing the different particles detected π K+ p The small peaks are due to beam bucket comming every 2 nS and giving random coincidences Coincidence Time (ns) Coincidence time = Time taken by electron to reach SOS - Time taken by hadrons to reach HMS (within a 30ns window)‏ Kaon transparency from electro-production has never been measured before!!! 8 8 8

Particle Identification in the HMS Aerogel Cherenkov  (Aerogel2 of n = 1.015)  (for k/p separation)‏ Gas Cerenkov   (Perflurobutane at 1 atm.)‏ (for pi/k separation)‏ 9 9 9

Energy & Momentum Conservation Particle Identification in the HMS e + p e’+K+ + Λ e + A e’+K+ + Λ + X Reactions e A Λ  e´ missing mass A-1 Energy & Momentum Conservation Ee + Mp = Ee׳ + EK+ +EΛ Pe + 0 = Pe’ + PK+ + PΛ MΛ = 1.115 GeV/c2 Mass of Λ is MΛ = [EΛ2 - PΛ2 ]1/2 MΣ = 1.119 GeV/c2 10

Kaons after application of all constraints for H target Before & After Application of Constraints on Kaon(Liquid Hydrogen) Data Pions, Protons, Kaons (in coincidence time vs missing mass ) using a loose Constraints Pions Kaons Protons MΛ= 1.115 MΣ= 1.119 Missing Mass: 1.10<Mx <1.15 for Λ, 1.17<Mx <1.22 for Σ Coincidence Time: abs(cointime+58.63)<0.26 Gas Cherenkov: SOS, N(p.e)>1; HMS, N(p.e)<1 Aerogel Cherenkov: HMS, N(p.e)<0 Other acceptances Hsyptar, hsxptar, hsdelta, ssdelta Kaons after application of all constraints for H target 11

Experimental Simulation “SIMC” Ingredients of SIMC: 1. Realistic Models of the magnetic spectrometers including multiple  scattering and energy loss in all intervening material encountered by the  particles. 2. Decay of kaons in flight, and radiative corrections for all  particles. 3. Model of the electro production of kaons from free protons 4. For heavier targets the free proton model is convoluted with a realistic  spectral function for each target.    Spectral function = probability of finding a proton inside the nucleus with a certain energy and momentum. Transparency to be extracted as 12

All particle identification and acceptance constraints applied Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ Q2 = Four Momentum Transferred Squared Q2 Q2 The ratio of Λ/Σ is determined from the LH2 data SIMC Λ + Σ Data & Data Q2=1.1 GeV2 : 15.6 Q2=2.2 GeV2 : 9.7 Q2=3.0 GeV2 : 6.4 Red – SIMC Blue – Data Q2 Q2 13 13

All particle identification and acceptance constraints applied Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ W = Centre of Mass Energy w w SIMC Λ + Σ Data & Data Red – SIMC Blue – Data w w 14 14

All particle identification and acceptance constraints applied Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ t = Mandelstam Variable t t SIMC Λ + Σ Data & Data Red – SIMC Blue – Data t t 15 15

All particle identification and acceptance constraints applied Comparison of Liquid Hydrogen Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ ϕpq= Angle Between Reaction Plane & Scattering Plane ϕpq ϕpq SIMC Λ + Σ Data & Data Red – SIMC Blue – Data ϕpq ϕpq 16 16

Kaons separated after application of all constraints on LD target Before & After Application of Constraints on Kaon(Liquid Deuterium) Data Kaons separated after application of all constraints on LD target Missing Mass: 1.09<Mx <1.22 Coincidence Time: abs(cointime+58.63)<0.26 Gas Cherenkov: SOS, N(p.e)>1; HMS, N(p.e)<1 Aerogel Cherenkov: HMS, N(p.e)<0 Other acceptances Hsyptar, hsxptar, hsdelta, ssdelta Pions, Protons & Kaons before application of all constraints for LD target 17 17

All particle identification and acceptance constraints applied Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ SIMC Λ SIMC Σ Q2 = Four Momentum Transferred Squared Q2 Q2 SIMC Λ + Σ Data & Data The ratios of Λ/Σ obtained from LH2 data are used to add the Λ-SIMC and Σ-SIMC yields Red – SIMC Blue – Data Q2 Q2 18 18

All particle identification and acceptance constraints applied Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Λ SIMC Σ Data SIMC Λ + Σ & σ = σ (Q2, W, t,  ϕpq)‏ W = Centre of Mass Energy w w Red – SIMC Blue – Data w w 19 19

All particle identification and acceptance constraints applied Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Λ SIMC Σ Data SIMC Λ + Σ & σ = σ (Q2, W, t,  ϕpq)‏ t t t = Mandelstam Variable Red – SIMC Blue – Data t t 20 20

All particle identification and acceptance constraints applied Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Λ SIMC Σ σ = σ (Q2, W, t,  ϕpq)‏ ϕpq= Angle Between Reaction Plane & Scattering Plane ϕpq ϕpq SIMC Λ + Σ Data & Data Red – SIMC Blue – Data ϕpq ϕpq 21 21

All particle identification and acceptance constraints applied Comparison of Data vs Simulation(SIMC)applying all constraints for Other Targets All particle identification and acceptance constraints applied σ = σ (Q2, W, t,  ϕpq)‏ Carbon Copper SIMC Λ + Σ & Data Q2 Q2 Gold Q2 = Four Momentum Transferred Squared Red – SIMC Blue – Data Q2 22 22

Outline Nuclear Transparency Nuclear Transparency with Pions & Kaons Analysis Preliminary Results 23 23 23

Systematic Uncertainties of E01107 3.9 3.8 TOTAL 2.0 1.0 Spectral Function Iteration 0.5 Acceptance collimator Radiative Corrections Pauli Blocking Pion Decay 2.5 Cut dependence 0.1 Beam Energy Pion Absorption Tracking(HMS+SOS)‏ Dead time correction 0.7 Trigger(HMS+SOS)‏ Coin blocking Target thickness 0.3 Charge 0.4 - 0.7 Particle ID scale(%) total(%)‏ point-to-point (%)‏ Item 5.4

Nuclear Transparency vs Q2 Cu, C, LD2 are shifted by -0.05,0.05,-0.10 in Q2 respectively Preliminary Result LD2 - Black Carbon - Red Transparency Copper - Green Gold - Blue Q2 ( GeV/c2 )

by the Department of Energy Analysis Plan Determine the model dependent uncertainty Compare with theoretical calculations(Please contact your favorite theorist ) Write paper & publish results This work is sponsored  by the Department of Energy  Office of Science Grant No.: DE-FG02-07ER41528 26 26 26

Thank You 27

All particle identification and acceptance constraints applied Comparison of Liquid Deuterium Data vs Simulation(SIMC)applying all constraints All particle identification and acceptance constraints applied SIMC Λ SIMC Σ σ = σ (Q2, W, t, phipq)‏ Missing Mass missing mass missing mass SIMC Λ + Σ Data & Data Red – SIMC Blue – Data missing mass missing mass 28 28