Probing Lorentz Invariance with a VHE-Flare of PKS

Slides:



Advertisements
Similar presentations
Observations of the AGN 1ES with the MAGIC telescope The MAGIC Telescope 1ES Results from the observations Conclusion The MAGIC Telescope.
Advertisements

MAGIC TeV blazars and Extragalactic Background Light Daniel Mazin on behalf of the MAGIC collaboration Max-Planck-Institut für Physik, Munich.
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
1 Understanding GRBs at LAT Energies Robert D. Preece Dept. of Physics UAH Robert D. Preece Dept. of Physics UAH.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
HIGH ENERGY ASTROPHYSICS TESTS OF LORENTZ INVARIANCE AND QUANTUM GRAVITY MODELS F. W. STECKER NASA Goddard Space Flight Center Miami 2011 Particle Physics.
1 Possible indirect evidence for axion-like particles from far away AGN? Alessandro De Angelis INFN, INAF and Udine University Photon propagation Observation.
Observations of 3C 279 with the MAGIC telescope M.Teshima 1, E.Prandini 2, M.Errando, D. Kranich 4, P.Majumdar 1, M.Mariotti 2 and V.Scalzotto 2 for the.
1 1 Alessandro De Angelis, INAF INFN/Univ. Udine & IST Milano 09 Dark matter Rapid variability Does c depend on the photon energy? Anomalies in the propagation.
Recent results from MAGIC Alessandro de Angelis Univ. Udine, INFN Trieste Bremen, July 2010 Alessandro de Angelis Univ. Udine, INFN Trieste Bremen, July.
X.-X. Li, H.-H. He, F.-R. Zhu, S.-Z. Chen on behalf of the ARGO-YBJ collaboration Institute of High Energy Physics Nanjing GRB Conference,Nanjing,
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
High energy gamma-rays and Lorentz invariance violation Gamma-ray team A – data analysis Takahiro Sudo,Makoto Suganuma, Kazushi Irikura,Naoya Tokiwa, Shunsuke.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
MAGIC Recent AGN Observations. The MAGIC Telescopes Located at La Palma, altitude 2 200m First telescope in operation since 2004 Stereoscopic system in.
MAGIC Results Alessandro De Angelis INFN, IST and University of Udine ECRS Lisboa, September 2006.
F. Volpe RICAP Rome Francesca Volpe for the H.E.S.S. collaboration Ecole Polytechnique - France H.E.S.S. observations of Active Galactic Nuclei.
44 th Rencontres de Moriond - La Thuile, Valle d’Aosta, February 1-8, 2009 The MAGICextragalactic sky The MAGIC extragalactic sky Barbara De Lotto Università.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
GRBs, Falcone et al.Next Generation Gamma White Paper Mtg. (St. Louis 2006) GRB Science with Next Generation Instrument Abe Falcone, David Williams, Brenda.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
A Simple Analytic Treatment of the Intergalactic Absorption Effect in Blazar  -ray Spectra Introduction Stecker, Malkan, & Scully (2006) have made a detailed.
Tests of Lorentz Invariance using Atmospheric Neutrinos and AMANDA-II John Kelley for the IceCube Collaboration University of Wisconsin, Madison Workshop.
Status of the MAGIC Telescope Project Presented by Razmick Mirzoyan On behalf of the MAGIC Collaboration Max-Planck-Institute for Physics (Werner-Heisenberg-Institute)
Hall C Summer Workshop August 6, 2009 W. Luo Lanzhou University, China Analysis of GEp-III&2γ Inelastic Data --on behalf of the Jefferson Lab Hall C GEp-III.
1 MAGIC Crab 10% Crab 1% Crab GLAST MAGIC HESS E. F(>E) [TeV/cm 2 s] E [GeV] Cycle 1 of data taking from Mar 2005 to Apr 2006 –~1200 hours, with efficiency.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Science Drivers for Small Missions in High Energy Astrophysics Luigi PiroCAS-ESA Workshop – Chengdu Feb. 25, 2014 Science Drivers for Small Missions in.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
Lorentz Invariance and CPT Violation Studies with MeV Blazars and GRBs 1.) Motivation and Status of Observations. 2.) Theoretical Framework (the Standard.
Igor Oya Vallejo UCM 1 MAGIC observations of Active Galactic Nuclei Igor Oya Vallejo UCM Madrid On behalf of MAGIC collaboration 1 VIII Reunión Científica.
Two exceptional γ -ray flares of PKS and their implications on blazar and fundamental physics Rolf Bühler MPIK Heidelberg KIPAC Tea Talk SLAC.
What we could learn from Cherenkov Telescope Array observations of Gamma-Ray Bursts Jonathan Granot Hebrew Univ., Tel Aviv Univ., Univ. of Hertfordshire.
Extracting Fundamental Physics from GW (et al.)
Swift Monitoring of Fermi Blazars and Other Sources
Gamma Rays from the Radio Galaxy M87
Figure 1. Three light curves of IRAS 13224–3809 in 600-s bins
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
Update on the triggered search for GRBs
MAGIC M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Observation of Pulsars and Plerions with MAGIC
Gamma Ray Constraints on New Physics Interpretations of IceCube Data
Comment on two topics related to fundamental “exotic” physics with AGN Alessandro De Angelis Brera, March 2012 Testing fundamental spacetime symmetries.
Lecture 4 The TeV Sky Cherenkov light Sources of Cherenkov radiation.
Lecture 5 Multi-wavelength cosmic background
Figure 6. Electron energy spectrum in equation (5) in units of 1047 multiplied by γ2 (solid line) at γ > γ0 compared with.
Light as a Wave                                            SPH4U Young Star Cluster NGC 7129.
Relativistic outflows and GLAST
Marco Salvati INAF (Istituto Nazionale di Astrofisica)
Using GRB Neutrinos to search for Lorentz Invariance Violation
High Energy emission from the Galactic Center
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?
Limits on Lorentz Invariance Violation from Gamma-Ray Burst Observations by Fermi Gamma-Ray Space Telescope Jonathan Granot University of Hertfordshire.
VHE Blazar Studies after a Decade of H.E.S.S., MAGIC & VERITAS
Future plans and world trend
Unfolding performance Data - Monte Carlo comparison
Speaker: Longbiao Li Collaborators: Yongfeng Huang, Zhibin Zhang,
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Transparency of the Universe to TeV photons
Center for Computational Physics
GRBs with GLAST Tsvi Piran Racah Inst. of Jerusalem, Israel
Time-Dependent Searches for Neutrino Point Sources with IceCube
Time-Dependent Searches for Neutrino Point Sources with IceCube
Fermi LAT Observations of Galactic X-ray binaries
Presentation transcript:

Probing Lorentz Invariance with a VHE-Flare of PKS 2155-304 Rolf Bühler & Agnieszka Jacholkowska for the H.E.S.S. collaboration Gamma 2008, Heidelberg

“Light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body” Are you sure?

Is c energy dependent ? Several Quantum Gravity models have predicted energy dependence of the speed of light. General parametrization: , with Leads to dispersion of poly-energetic signals: Linear: Quadratic:

Measurable effect ? Requirements: High Energy Low Energy Time Requirements: Long distance, fast variability → GRB's (x-Ray) and AGN (VHE) Caveat: Cancellation due to source intrinsic effect (unlikely if no dispersion) → Population studies

( if sign helicity dependent ) Current limits Time of flight measurements GRB's [1,2] : AGN's [3] : Vacuum Birefringence Radio Galaxies [4] : Modified thresholds UHECR [5] : Crab Nebula [6] : ( population studies: ) ( if sign helicity dependent ) ( if sign negative ) ( for electrons ) [1]Boggs et al., Ap. J. L. (2004) [2]Ellis et al., Astr. Part. Phys (2006) [3]Biller et al., PRL (1999) [4]Gleiser et al. , PRD (2001) [5]Galaverni et al., PRL (2008) [6]Maccione et al., JCAP (2007)

The “big flare” of PKS 2155 -304 crab F. Aharonian et al. Arp. J. L. 664 (2007) 1 min bins crab Historic high fluxes (~14 crab or ~80 times normal) High statistics (~10000 photons) Five sub-burst with rise/fall times of ~200 s High state in all of july, see thursday ..

The “big flare” of PKS 2155 -304 Oversampled, 2-min binned 200-800 GeV preliminary ΔEmean = 1 TeV >800 GeV

The Modified Cross Correlation Function preliminary Apply MCCF → Peak at 20 s , error?

Limit determination → < 73 s TeV-1 Linear: Quadratic: Error propagation by simulating light curves within errors ( including bin correlations ) preliminary RMS = 28 s → < 73 s TeV-1 21% ( 95% confidence ) Linear: ( ) Quadratic: ( )

Simulations of bin correlations Example for oversampling of two: Throw random numbers on a fine grid Add and multiply with measurement error on coarse grids

Test – Inject dispersion preliminary Recovery of injected dispersion in data

Towards an AGN population Derived from 232 +- 54 s lag between 0.15-0.25 and 0.6-1.2 TeV preliminary [3] To date three measurements at VHE → No trend with redshift Future measurements will allow conclusions on “delay cancellation” [1] [2] [1] Biller et al., PRL (1999) [2] Albert et al., astro-ph/07082889 (2007) [3] Albert et al., Ap. J. (2007)

Conclusions VHE signal from PKS 2155-304 shows no energy dispersion. This yields the most constraining limits on speed of light modifications to date: (Linear) (Quadratic) Measurement opens a new redshift window for populations studies, however for a final verdict on time-delay cancellation further observations are needed