From risk to opportunity Lecture 11 John Hey and Carmen Pasca.

Slides:



Advertisements
Similar presentations
Copyright © 2008 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Managerial Economics, 9e Managerial Economics Thomas Maurice.
Advertisements

Choices Involving Risk
Behavioral Economics (Lecture 1) Xavier Gabaix February 5, 2003.
Money, Banking & Finance Lecture 3
Economics of Information (ECON3016)
From risk to opportunity Lecture 12 John Hey and Carmen Pasca.
Chapter 5 Appendix Indifference Curves
Utility theory U: O-> R (utility maps from outcomes to a real number) represents preferences over outcomes ~ means indifference We need a way to talk about.
Choice under Uncertainty. Introduction Many choices made by consumers take place under conditions of uncertainty Therefore involves an element of risk.
Fi8000 Risk, Return and Portfolio Theory
From risk to opportunity Lecture 10 John Hey and Carmen Pasca.
Economics of incomplete information
Utility Theory.
Decisions under Uncertainty
Chapter 15: Decisions Under Risk and Uncertainty McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 15 Decisions under Risk and Uncertainty.
1 Utility Theory. 2 Option 1: bet that pays $5,000,000 if a coin flipped comes up tails you get $0 if the coin comes up heads. Option 2: get $2,000,000.
Risk a situation in which there is a probability that an event will occur. People tend to prefer greater certainty and less risk.
Lecture 4 on Individual Optimization Risk Aversion
Converting Risk Preferences into Money Equivalents with Quadratic Programming AEC 851 – Agribusiness Operations Management Spring, 2006.
Consumer Choice From utility to demand. Scarcity and constraints Economics is about making choices.  Everything has an opportunity cost (scarcity): You.
L1: Risk and Risk Measurement1 Lecture 1: Risk and Risk Measurement We cover the following topics in this part –Risk –Risk Aversion Absolute risk aversion.
L11: Risk Sharing and Asset Pricing 1 Lecture 11: Risk Sharing and Asset Pricing The following topics will be covered: Pareto Efficient Risk Allocation.
Uncertainty and Consumer Behavior
Uncertain Outcomes Here we study projects that have uncertain outcomes and we view various ways people may deal with the uncertain situations.
Last Day Utility Analysis. Today Utility Analysis (cont’d) International Diversification.
Notes – Theory of Choice
Chapter Twelve Uncertainty. Uncertainty is Pervasive u What is uncertain in economic systems? –tomorrow’s prices –future wealth –future availability of.
Chapter Twelve Uncertainty. Uncertainty is Pervasive u What is uncertain in economic systems? –tomorrow’s prices –future wealth –future availability of.
L9: Consumption, Saving, and Investments 1 Lecture 9: Consumption, Saving, and Investments The following topics will be covered: –Consumption and Saving.
L4: Consumption and Saving1 Lecture 4: Consumption and Saving The following topics will be covered: –Consumption and Saving under Certainty Aversion to.
Chapter Twelve Uncertainty. Uncertainty is Pervasive u What is uncertain in economic systems? –tomorrow’s prices –future wealth –future availability of.
LECTURE 2 : UTILITY AND RISK AVERSION (Asset Pricing and Portfolio Theory)
Lecture 3: Arrow-Debreu Economy
Investment Analysis and Portfolio Management
Frank Cowell : Risk RISK MICROECONOMICS Principles and Analysis Frank Cowell Almost essential Consumption and Uncertainty Almost essential Consumption.
Financial Products and Markets Lecture 5. Investment choices and expected utility The investment techniques are based on a system of rules that allows.
Copyright © 2005 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Managerial Economics Thomas Maurice eighth edition Chapter 15.
Uncertainty Snyder and Nicholson, Copyright ©2008 by Thomson South-Western. All rights reserved.
Frank Cowell: Microeconomics Risk MICROECONOMICS Principles and Analysis Frank Cowell Almost essential Consumption and Uncertainty Almost essential Consumption.
Microeconomics Course E John Hey. Examinations Go to Read.
Markets, Firms and Consumers Lecture 4- Capital and the Firm.
Microeconomics 2 John Hey. Chapters 23, 24 and 25 CHOICE UNDER RISK Chapter 23: The Budget Constraint. Chapter 24: The Expected Utility Model. Chapter.
Chapter 5 Uncertainty and Consumer Behavior. ©2005 Pearson Education, Inc.Chapter 52 Q: Value of Stock Investment in offshore drilling exploration: Two.
Introductory Microeconomics (ES10001) Topic 3: Risk and Uncertainty.
Chapter 5 Choice Under Uncertainty. Chapter 5Slide 2 Topics to be Discussed Describing Risk Preferences Toward Risk Reducing Risk The Demand for Risky.
Decision theory under uncertainty
© 2010 W. W. Norton & Company, Inc. 12 Uncertainty.
© 2005 Pearson Education Canada Inc Chapter 17 Choice Making Under Uncertainty.
Chapter Seventeen Uncertainty. © 2009 Pearson Addison-Wesley. All rights reserved Topics  Degree of Risk.  Decision Making Under Uncertainty.
Microeconomics 2 John Hey. Next two lectures The lectures tomorrow (Tuesday the 22 nd of January) and next Monday (the 28 nd of January) will be on examination.
Microeconomics 2 John Hey. Plan for today 1.We look at the Homework I set at the end of Lecture We will quickly revise the relationships between.
1 The economics of insurance demand and portfolio choice Lecture 1 Christian Gollier.
Microeconomics Course E John Hey. Chapter 26 Because we are all enjoying risk so much, I have decided not to cover Chapter 26 (on the labour market)
Microeconomics Corso E John Hey. Notation Intertemporal choice. Two periods: 1 and 2. Notation: m 1 and m 2 : incomes in the two periods. c 1 and c 2.
QUIZ FOUR The Consumer Theory. 1.According to the principle of diminishing marginal utility: A. The more of a good a consumer consumes the lower her total.
Risk and Uncertainty When we represent outcomes as possibilities rather than a deterministic outcome, we must address feelings about risk. Why would risk.
© 2011 South-Western, a part of Cengage Learning, all rights reserved C H A P T E R 2011 update The Theory of Consumer Choice M icroeconomics P R I N C.
DADSS Lecture 11: Decision Analysis with Utility Elicitation and Use.
L6: Risk Sharing and Asset Pricing1 Lecture 6: Risk Sharing and Asset Pricing The following topics will be covered: Pareto Efficient Risk Allocation –Defining.
Microeconomics 2 John Hey. Lecture 26: The Labour Market The supply of labour (consumer: leisure time/money trade-off). The demand for labour (theory.
Chapter 15: Decisions Under Risk and Uncertainty
Decisions Under Risk and Uncertainty
CHAPTER 1 FOUNDATIONS OF FINANCE I: EXPECTED UTILITY THEORY
Microeconomics 2 John Hey.
12 Uncertainty.
Risk Chapter 11.
Chapter Twelve Uncertainty.
Chapter 15 Decisions under Risk and Uncertainty
Chapter 15: Decisions Under Risk and Uncertainty
Presentation transcript:

From risk to opportunity Lecture 11 John Hey and Carmen Pasca

Lecture 11 Implications of EUT Finding your (EU) utility function… … two different ways. Defining risk aversion and risk loving. Defining two indices of risk aversion. Some special utility functions with nice properties. Examples of its use in economics: 1.The theory of the competitive firm facing price uncertainty. 2.The life-cycle savings problem under income risk.

Lecture 11 Implications of EUT: Finding your (EU) utility function 1 Finding your utility function over [x, X]. Here we are using x to denote the lower bound and X the upper bound of the interval over which we are going to find your (EU) utility function. There are lots of ways to find it. Here is just one. Put u(x)=0 and u(X)=1. To find the utility value for some intermediate amount x i answer the question: “what probability u i in the gamble [X,u i ;x,(1-u i )] makes you indifferent between that gamble and x i ?”. It immediately follows that u(x i ) = u i. Repeat for lots of different values of x i. Example, put x= €0 and X= €100. Suppose you are risk-averse and you are indifferent between €50 and the gamble [€100,0.75; €0,0.25] then for you u(€50) = (Note EX=€75>€50.)

Lecture 11 Implications of EUT: Finding your (EU) utility function 2 Here is another way: interpolation. Suppose that you have already found x a and x b such that, for you, u(x a )=a and u(x b )=b. To find your utility value half-way in-between answer the question: “what amount of money x (a+b)/2 makes you indifferent between that amount and the gamble between x a and x b ; that is the gamble [x a,½;x b,½]?”. It immediately follows that u(x (a+b)/2 ) = (a+b)/2. Example, suppose a=0.5, x a =25; b=0.7, x b =49 and you are indifferent between €36 and a gamble between €25 and €49 then for you u(36) = 0.6. Note this latter gamble has expected value €37 – you are risk-averse (and your function is concave between €25 and €49).

Lecture 11 Implications of EUT: Certainty Equivalent For a given individual we define his or her certainty equivalent, CE, of some lottery/gamble as the amount of money, which, if received with certainty, the individual regards as the same as the lottery. So u(CE) = Eu(X) where X is the amount received in the lottery, CE denotes the Certainty Equivalent and where u(.) is the individual’s utility function. Example: lottery is 50:50 chance of €16 or €4. (Note that EX = 10.) Suppose u(x) = x 0.5. Then Eu(X) = 0.5u(16) + 0.5u(4) = 0.5(4)+0.5(2) = 3. And hence the CE is given by u(CE)=3. Hence CE = 9.

Lecture 11 Implications of EUT: Risk Premium For a given individual we define his or her risk premium, RP, for some lottery/gamble as the amount of money he or she would pay to convert the lottery into its expected value. So RP = EX – CE, where CE is the individual’s certainty equivalent for the gamble. Example: lottery is 50:50 chance of €16 or €4. (Note that EX = €10.) Suppose u(x) = x 0.5. Then Eu(X) = 0.5u(16) + 0.5u(4) = 0.5(4)+0.5(2) = 3. And hence the CE is given by u(CE)=3. That is CE = €9. And so the RP = 10 – 9 = 1; the individual would pay up to €1 to exchange the lottery for the certainty of €10.

Lecture 11 Implications of EUT: Risk aversion We define a risk-averse person as one who (always) prefers a certainty to a risk with the same expected value. So his or her certainty equivalent for some lottery is (always) less than the Expected Value of the lottery; the risk premium is always positive. This implies that his or her utility function is (everywhere) concave. Let us continue with the example where u(x) = √x = x 0.5 (concave) and where the lottery is a 50:50 chance of 16 or 4. What is the expected value of this lottery? 0.5(16) + 0.5(4) = 10. And the CE? 9. See the next slide.

Lecture 11 Implications of EUT: Concave utility Gamble pays €4 with probability ½ and €16 with probability ½. Expected Value is €10 Certainty equivalent is €9 because u(9) = 3 = ½ u(4) + ½ u(16) = EU(X) Risk Premium = €1 = €10 - €9 = EX- CE

Lecture 11 Implications of EUT: risk attitudes An individual is everywhere risk-averse (-neutral, -loving)… …if his or utility function is always concave (linear, convex) … if his or her certainty equivalent for some risk is always less than (equal to, more than) the expected value of the risk. … if he or she is always willing to pay a positive (a zero, a negative) amount to turn a risk into a certainty with the same expected value. The degree of concavity (convexity) indicates the degree of risk-aversion (loving).

Lecture 11 Implications of EUT: measuring risk attitude The degree of concavity indicates the degree of risk aversion. Concavity of a function is to do with its second derivative. But as the function is unique only up to a linear transformation, it has to be divided by the first derivative. Absolute risk aversion index = -u”(x)/u’(x) Relative risk aversion index = -xu”(x)/u’(x)

Lecture 11 Implications of EUT: CARA and CRRA For one who has Constant Absolute Risk Aversion: If we add some constant to all the outcomes of a gamble, the CE of that gamble rises by the same constant and hence the Risk Premium stays the same. From -u”(x)/u’(x) = r we get u(x) is proportional to –e -rx [unless r=0 in which case is proportional to x] If X is N(μ,σ 2 ) then Eu(X) proportional to –exp(-rμ+r 2 σ 2 /2). For one who has Constant Relative Risk Aversion: If we multiply by some constant to all the outcomes of a gamble, the CE of that gamble is multiplied by the same constant and hence the Risk Premium is multiplied by the same constant. From -xu”(x)/u’(x) = r we get u(x) is proportional to x 1-r [unless r=1 in which case is proportional to ln(x)] Note that the proportionality results from the fact that the utility function is unique only up to a linear transformation.

Lecture 11 Implications of EUT: the perfectly competitive firm Consider the perfectly competitive firm under output price uncertainty. p, the price, is risky with known density function. The cost function c(.) is known. The firm wants to maximise the Expected Utility of profits = π = px – c(x) by its choice of x, the output. Choose x to maximise Eu(π)=Eu[px – c(x)]. FOC is that E{u’(π)[p-c’(x)]} = 0. From this we can show c’(x) < Ep Firm produces less under risk. See Hey JD Uncertainty in Economics, Martin Robertson 1979 (now way out of print).

Lecture 11 Implications of EUT: life-cycle savings Life-cycle consumption/savings problem under income risk. Objective to maximise u(C 1 ) + ρu(C 2 ) + ρ 2 u(C 3 ) + … subject to W t+1 = R(Y t – C t + W t ) for all t. C, Y and W are consumption, income and wealth; ρ and R are the discount rate and the rate of return (1 plus the rate of interest). In general it can be shown that the optimal strategy is C* = a + b W, and that b=(R-1)/R So the marginal propensity to consume (out of wealth) depends only on the rate of interest/return. When the utility function is CARA, with r the index of absolute risk aversion and the distribution of income is N(μ,σ 2 ) it can also be shown (assuming r > 0) that a = μ – ½r(R-1)σ 2 –ln(Rρ)/[r(R-1] So the intercept of the consumption function depends positively on the mean of the income distribution and negatively on the variance; also if Rρ < 1 then increases in r and in R both lead to decreases in the intercept. Hey J D, “Optimal Consumption under Income Uncertainty”, Economic Letters, 5, 1980,

Lecture 11 Implications of EUT: Conclusions The great joy of EUT is its elegance and tractability. It is easy to find your (EU) utility function. It is concave (linear, convex) where you are risk- averse (-neutral, -loving). The degree of risk-aversion can be measured by the degree of concavity of the utility function (using either an absolute or a relative measure). CARA and CRRA are to useful special cases… … which lead to insightful results.

Lecture 11 Goodbye!

Lecture 11 Implications of EUT