Black Holes : Where God Divided by Zero Suprit Singh.

Slides:



Advertisements
Similar presentations
General Relativity Physics Honours 2009 Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 4.
Advertisements

Black Holes. Underlying principles of General Relativity The Equivalence Principle No difference between a steady acceleration and a gravitational field.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 9.
A New Holographic View of Singularities Gary Horowitz UC Santa Barbara with A. Lawrence and E. Silverstein arXiv: Gary Horowitz UC Santa Barbara.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
Gerard ’t Hooft Spinoza Institute Utrecht University CMI, Chennai, 20 November 2009 arXiv:
Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity of BHT massive gravity Ricardo Troncoso Ricardo Troncoso In collaboration.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 2.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 8.
Black Holes Written for Summer Honors Black Holes Massive stars greater than 10 M  upon collapse compress their cores so much that no pressure.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 4.
Black Holes Old ideas for black holes Theory of black holes Real-life black holes Stellar mass Supermassive Speculative stuff (if time)
Entanglement of cats |   =  |  +  |  Teleportation: making an exact replica of an arbitrary quantum state (while destroying the original...)
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 7.
Chapter 12 Gravitation. Theories of Gravity Newton’s Einstein’s.
Black Holes By Irina Plaks. What is a black hole? A black hole is a region in spacetime where the gravitational field is so strong that nothing, not even.
Classical Mechanics and Special Relativity with GA Suprit Singh.
Announcements Exam 4 is Monday May 4. Tentatively will cover Chapters 9, 10, 11 & 12 Sample questions will be posted soon Observing Night tomorrow night.
General Relativity Physics Honours 2010
Stationary Elevator with gravity: Ball is accelerated down.
Lamb shift in Schwarzschild spacetime Wenting Zhou & Hongwei Yu Department of Physics, Hunan Normal University, Changsha, Hunan, China.
Philip Kahn – 02/20/2009 Tri-Valley Stargazers. Know Thy Enemy  Black holes are:  Infinitesimally small  Asymptotically dense  ρ ∝ M/L P 3  Black.
Quiz #9 Suppose the Sun were to suddenly become a black hole with all of its mass falling into the black hole. Tell what would happen to the Earth (in.
General Relativity Physics Honours 2005 Dr Geraint F. Lewis Rm 557, A29
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Forming Nonsingular Black Holes from Dust Collapse by R. Maier (Centro Brasileiro de Pesquisas Físicas-Rio de Janeiro) I. Damião Soares (Centro Brasileiro.
BLACK HOLES and WORMHOLES PRODUCTION AT THE LHC I.Ya.Aref’eva Steklov Mathematical Institute, Moscow.
Chapter 13 Black Holes. What do you think? Are black holes just holes in space? What is at the surface of a black hole? What power or force enables black.
Black Holes Eternal? Or just long lived? by Patrick Murphy.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
Bending Time Physics 201 Lecture 11. In relativity, perception is not reality Gravity affects the way we perceive distant events For example, although.
Teaching Black Holes Donald Marolf, UCSB July 20, 2006.
Fundamental Principles of General Relativity  general principle: laws of physics must be the same for all observers (accelerated or not)  general covariance:
Black Holes Formation Spacetime Curved spacetime Event horizon Seeing black holes Demo: 1L Gravity Well - Black Hole.
Analysis of half-spin particle motion in static Reissner-Nordström and Schwarzschild fields М.V.Gorbatenko, V.P.Neznamov, Е.Yu.Popov (DSPIN 2015), Dubna,
Lecture 6: Schwarzschild’s Solution. Karl Schwarzschild Read about Einstein’s work on general relativity while serving in the German army on the Russian.
Principle of Equivalence: Einstein 1907 Box stationary in gravity field Box falling freely Box accelerates in empty space Box moves through space at constant.
Black Hole Vacuum Cleaner of the Universe. Formation of Black Hole nuclear fusionnuclear fusion - tends to blow the star's hydrogen outward from the star's.
Black Holes in General Relativity and Astrophysics Theoretical Physics Colloquium on Cosmology 2008/2009 Michiel Bouwhuis.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 9.
Department of Physics, National University of Singapore
Physics 311 General Relativity Lecture 18: Black holes. The Universe.
Announcements Homework: Chapter 2 handout # 1, 2, 3, 4 & 7 Will not be collected but expect to see problems from it on the exam. Solutions are posted.
SINGULARITY THEOREMS Singularity = place where physics breaks down –usually, where some predicted quantity becomes infinite, e.g., curvature of spacetime.
Physics 55 Monday, December 5, Course evaluations. 2.General relativity with applications to black holes, dark matter, and cosmology. 3.Hubble’s.
Black Holes Pierre Cieniewicz. What are they? A Black Hole (BH) is a place in space from which nothing can escape The reason for this is gravity Some.
General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang.
Chris Done University of Durham/ISAS
KERR BLACK HOLES Generalized BH description includes spin –Later researchers use it to predict new effects!! Two crucial surfaces –inner surface = horizon.
Gravitation in 3D Spacetime John R. Laubenstein IWPD Research Center Naperville, Illinois APS April Meeting Denver, Colorado.
BLACK HOLES National College Iasi. What is a black hole?  A black hole is a region of space from which nothing, not even light, can escape.  It is the.
Announcements Grades for third exam are now available on WebCT Observing this week and next week counts on the third exam. Please print out the observing.
Yoshinori Matsuo (KEK) in collaboration with Hikaru Kawai (Kyoto U.) Yuki Yokokura (Kyoto U.)
BLACK HOLES. BH in GR and in QG BH formation Trapped surfaces WORMHOLES TIME MACHINES Cross-sections and signatures of BH/WH production at the LHC I-st.
Black Holes and the Einstein-Rosen Bridge: Traversable Wormholes? Chad A. Middleton Mesa State College September 4, 2008.
Chapter 14: Chapter 14: Black Holes: Matters of Gravity.
18 October 2001Astronomy 102, Fall Today in Astronomy 102: “real” black holes, as formed in the collapse of massive, dead stars  Formation of a.
Harrison B. Prosper Florida State University YSP
Spacetime solutions and their understandings
Closed trapped surfaces and Cauchy horizons in gravitational collapse
Geometric aspects of extremal Kerr Black Hole entropy E M Howard
The Rotating Black Hole
Charged black holes in string-inspired gravity models
Relativity H7: General relativity.
Black Holes.
General Relativity Physics Honours 2006
David Berman Queen Mary College University of London
Parts, existence of, origin,
Black Holes Escape velocity Event horizon Black hole parameters
Expressing n dimensions as n-1
Presentation transcript:

Black Holes : Where God Divided by Zero Suprit Singh

Whats a hole anyway? Well, its a place in the spacetime where the curvature blows up… called Singularity Cant Specify where, as it doesnt exist on the manifold So we are concerned with r>0

Structure of Black Holes Work of Israel, Carter, Robinson and Hawking All but M, Q and J information is lost for bodies falling into the Black Holes Black Holes have No Hair - Wheeler Although Mathematically Complex, structurally quite Simple.

Black Hole Types Only 3 Special Unique solns: Schwarzschild Reissner – Nordstrom Kerr

Okay…How do you get em???? Erm..brutally… Einstein's Field =ns relate Geometry at a point to the Energy-momentum density at that point… ( Zey r Local) So you crank up the RHS and solve it up… And yeah..Smart guys use Symmetries to make it a lot easier…

Flat Minkowski space-time gets modified such that Spherical Symmetry is preserved. Note that, now, r is not radial coordinate. We define it as Circumference/2pi. Hence sometimes also called Reduced Circumference and is the shell-observer distance between adjacent circles and is more than dr for r > 2M Coordinate t is the far-off observers time. The shell time is therefore related as giving local shell structure as Schwarzschild Black Hole The Coordinates Metric Singularities Falling In Formation Conformal Diagram

The Coordinates Metric Singularities Falling In Formation Penrose Diagram Schwarzschild Black Hole First Singularity is regarding the Spherical Coordinate system and is Removable Second Apparent Singularity concerns, r = 2M which also removable but has interesting implications. Lastly, we have singular structure at r = 0 which is an honest tear in the spacetime for Curvature Scalar Blows up there Schwarzschild Black Hole The Coordinates Metric Singularities Falling In Formation Conformal Diagram

The Coordinates Metric Singularities Falling In Formation Penrose Diagram Schwarzschild Black Hole Schwarzschild Black Hole The Coordinates Metric Singularities Falling In Formation Conformal Diagram Exploring the Causal Structure of the Schwarzschild Metric Consider radial null curves ( well, radial Photons, OK ) from which we note that which is the slope of Light Cones. Note that for far away r, it is +/- 1 however it becomes infinite for r = 2M, i.e., the cones shrivel up as they get near 2M. For the far observer, it never gets there… However, the light gets in alright in its own frame, everythings smooth Lets get inside the horizon. First nothings stationary there. For static particle well have an impossibility...

Then How do particles move inside??? We can get the answer if we know how light cones behave in there.. And (t, r, theta, phi) are inadequate for r<2M. Hence we introduce new time coordinate not singular at 2M and express the geometry in Eddington- Finkelstein coordinates The surface r = 2G M, while being locally perfectly regular, globally functions as a point of no return. Schwarzschild Black Hole The Coordinates Metric Singularities Falling In Formation Conformal Diagram

Review of the Kruskal-Szekeres Map : I.Region I and II correspond to Outside and inside of the S - Black hole. II.Region IV and III correspond to Outside and inside of the time - symmetric S - White hole. A black hole is a region of spacetime from which no signal can escape to infinity (Roger Penrose) This is unsatisfactory because infinity is not part of the spacetime. However the definition concerns the causal structure of spacetime which is unchanged by conformal compactification Schwarzschild Black Hole The Coordinates Metric Singularities Falling In Formation Conformal Diagram

Choose Λ s.t. i.e., all points at in the original metric are at finite affine parameter in the new metric Elements of the diagram : a. spacetime null lines are oriented at 45 to the vertical b. infinity is represented as finite boundary to the picture Fig (b) is the Diagram for Minkowski spacetime. Fig (c) is the Diagram for Spherically symmetric collapse to Black Hole, the horizon lies at 45. Any material particles world line cannot tilt at more that 45 to the vertical, so it cannot escape from the interior region behind the horizon once it has crossed into it. Moreover, once inside that region, it is forced into the singularity. Schwarzschild Black Hole The Coordinates Metric Singularities Falling In Formation Conformal Diagram

The Program for Minkowski :

Reissner- Nordström Black Hole The Coordinates Metric Singularities M 2 P 2 - Q 2 M 2 = P 2 - Q 2 Generalized Schwarzschild metric for a black hole that has An electric charge No angular momentum Δ(r) = (1 - 2M/r + P 2 /r 2 +Q 2 /r 2 )

The Horizon Function, Δ(r) is given by, Δ(r) = (1 - 2M/r + P 2 /r 2 +Q 2 /r 2 ) and is quadratic with 2 distinct roots These two roots are given by; r + = M + (M 2 - P 2 - Q 2 ) 1/2 r - = M - (M 2 - P 2 - Q 2 ) 1/2 The two roots correspond to two different event horizons, one at r + and the other at r - Reissner- Nordström Black Hole The Coordinates Metric Singularities M 2 P 2 - Q 2 M 2 =P 2 - Q 2

Case One: M 2 < P 2 - Q 2 In this case the coefficient Δ is always positive (never zero) The metric is completely regular all the way down to r = 0. The coordinate t is always timelike and r is always spacelike. The r = 0 singularity is a timelike line. Since there is no event horizon, there is no obstruction to an observer traveling to the singularity and returning to report on what was observed. The singularity is repulsive-timelike, geodesics never intersect r = 0; approach and reverse course (Null geodesics can reach the singularity) As r tends to infinity the solution approaches flat spacetime and the causal structure seems normal everywhere. The conformal diagram is just like that of Minkowski, except that now r = 0 is a singularity

Reissner- Nordström Black Hole The Coordinates Metric Singularities M 2 P 2 - Q 2 M 2 = P 2 - Q 2 However,

Reissner- Nordström Black Hole The Coordinates Metric Singularities M 2 P 2 - Q 2 M 2 = P 2 - Q 2 Case Two: M 2 > P 2 - Q 2 Space and time change roles upon crossing the outer horizon as normal Fall to inner Horizon is inevitable. All Phenomenon same as P = Q = 0 At the inner horizon, the space and time co-ordinates change roles again. The singularity being timelike now can be avoided (Not necessarily in your future) Choose r = 0 or back to increasing r through r(-), r will again be timelike, in reverse and will increase to spit past r(+) Then you can choose to go back into the black hole – this time a different one and repeat the voyages as many times you want.

Reissner- Nordström Black Hole The Coordinates Metric Singularities M 2 P 2 - Q 2 M 2 = P 2 - Q 2

Reissner- Nordström Black Hole The Coordinates Metric Singularities M 2 < P 2 - Q 2 M 2 < P 2 - Q 2 M 2 = P 2 - Q 2 Case Three: M 2 = P 2 - Q 2 The Extreme Solution, Unstable as adding just a little matter will bring it to Case Two Single event horizon r = M but r is never timelike, it becomes null at M, but is spacelike on the other side Singularity r=0 is timelike as in other cases and again avoidable However, it stays on left though you can move to extra copies of Asymptotical flativerse

Kerr Black Hole The Coordinates Event Horizon/s Ring Singularity Conformal Diagram Non-zero angular momentum Axial symmetry Uses Boyer-Lindquist coordinates Take limit (a,0), we are left with Schwarzschild Take limit (M,0), Its flativerse but not polar but Ellipsoidal ( Expected ??)

Kerr Black Hole The Coordinates Event Horizon/s Ring Singularity Conformal Diagram As in the Reissner-Nordstrom solution, there are three possibilities: a) M > a : Physical case b) M = a : Unstable c) M < a : Naked Singularity The Event Horizons are : A surface of infinite gravitational red shift can be determined by The region between the Outer Horizon and Outer static limit is termed Ergosphere (Energy??)

Kerr Black Hole The Coordinates Event Horizon/s Ring Singularity Conformal Diagram The True Singularity doesnt occur at r=0 in this case But at r = 0 is not a point in space but a disc and singularity is a ring at the edge of this disc Around the ring are CTCs and if you go round, you can meet your past Go through the ring and Exit to another Asymptote flativerse but not an identical copy The new spacetime is described by Kerr metric with r < 0, as a result there are no horizons

Kerr Black Hole The Coordinates Event Horizon/s Ring Singularity Conformal Diagram Penrose Process : Living off a Rotating Black Hole

References Exploring Black Holes : an introduction to general relativity,Taylor and Wheeler Black Holes and Time Warps, Kip S Thorne Spacetime and Geometry, Sean Carrol Black Holes, Paul Townsend The Nature of Space and Time, Hawking and Penrose arxiv.org/abs/hep-th/ The Road to Reality, Roger Penrose Gravity, Black Holes, and the Very Early Universe, T L Chow Introducing Einsteins Relativity, Ray DInverno Hope you Enjoyed the ride…