The Binomial Theorem Objectives: Evaluate a Binomial Coefficient

Slides:



Advertisements
Similar presentations
Digital Lesson The Binomial Theorem.
Advertisements

Binomial Theorem 11.7.
§ 11.4 The Binomial Theorem.
Pascal’s Triangle Row
Binomial Coefficient.
SFM Productions Presents: Another adventure in your Pre-Calculus experience! 9.5The Binomial Theorem.
Monday: Announcements Progress Reports this Thursday 3 rd period Tuesday/Wednesday STARR Testing, so NO Tutorials (30 minute classes) Tuesday Periods 1,3,5,7.
Copyright © 2014, 2010 Pearson Education, Inc. Chapter 9 Further Topics in Algebra Copyright © 2014, 2010 Pearson Education, Inc.
The Binomial Theorem.
Notes 9.2 – The Binomial Theorem. I. Alternate Notation A.) Permutations – None B.) Combinations -
What does Factorial mean? For example, what is 5 factorial (5!)?
BINOMIAL EXPANSION. Binomial Expansions Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The binomial theorem provides a useful method.
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
11.1 – Pascal’s Triangle and the Binomial Theorem
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
5-7: The Binomial Theorem
Lesson 6.8A: The Binomial Theorem OBJECTIVES:  To evaluate a binomial coefficient  To expand a binomial raised to a power.
Copyright © Cengage Learning. All rights reserved. 8.4 The Binomial Theorem.
The Binomial Theorem.
Copyright © Cengage Learning. All rights reserved. 8 Sequences, Series, and Probability.
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
2-6 Binomial Theorem Factorials
Pg. 601 Homework Pg. 606#1 – 6, 8, 11 – 16 # … + (2n) 2 # (3n + 1) #5 #7(3n 2 + 7n)/2 #84n – n 2 #21#23 #26 #29 #33The series.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
5.4 Binomial Coefficients Theorem 1: The binomial theorem Let x and y be variables, and let n be a nonnegative integer. Then Example 3: What is the coefficient.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
Essential Questions How do we multiply polynomials?
8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
PreCalculus Section 8-5 The Binomial Theorem. Objectives Use the Binomial Theorem to calculate binomial coefficients. Use binomial coefficients to write.
Combination
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
Binomial Theorem and Pascal’s Triangle.
Chapter 12.5 The Binomial Theorem.
The Binomial & Multinomial Coefficients
The binomial expansions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Pascal’s Triangle and the Binomial Theorem
Copyright © Cengage Learning. All rights reserved.
Section 9-5 The Binomial Theorem.
Use the Binomial Theorem
The Binomial Theorem Ms.M.M.
The Binomial Expansion Chapter 7
A quick and efficient way to expand binomials
Use the Binomial Theorem
Ch. 8 – Sequences, Series, and Probability
Unit #4 Polynomials.
Binomial Expansion.
Digital Lesson The Binomial Theorem.
Ch 4.2: Adding, Subtracting, and Multiplying Polynomials
8.4 – Pascal’s Triangle and the Binomial Theorem
Digital Lesson The Binomial Theorem.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Use the Binomial Theorem
The Binomial Theorem.
11.6 Binomial Theorem & Binomial Expansion
Digital Lesson The Binomial Theorem.
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
Chapter 12 Section 4.
Digital Lesson The Binomial Theorem.
The binomial theorem. Pascal’s Triangle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Digital Lesson The Binomial Theorem.
Digital Lesson The Binomial Theorem.
The Binomial Theorem.
10.4 – Pascal’s Triangle and the Binomial Theorem
Presentation transcript:

The Binomial Theorem Objectives: Evaluate a Binomial Coefficient Expand a Binomial raised to a power Find a particular term in a binomial expansion

The Binomial Theorem Let be real numbers. For any positive integer , we have So let’s expand using the Binomial Theorem

Observe the following patterns: 1. The first term in the expansion is . The exponents on decrease by 1 in each successive term 2. The exponents on in the expansion increase by 1 in each successive term. In the first term, the exponent on is 0 and the last term is . 3. The sum of the exponents on the variables in any term in the expansion is equal to . 4. The number of terms in the polynomial expansion is one greater than the power of the binomial . There are terms in the expanded form.

But what does mean or equal? It is the Binomial Coefficient For nonnegative integers , the expression (read “n above r”) is called a Binomial Coefficient and is defined by EX: Evaluate each expression 1. 2. 3.

Four useful formulas involving the symbol Now suppose we arrange the values of the symbol in a triangular display. This display is called the Pascal Triangle and is an interesting and organized display of the symbol.

EX: Expand the expression using the Binomial Theorem 1. 2.

EX: Finding a particular term in a Binomial Expansion 3. Find the fourth term in the expansion of 4. Find the coefficient of in the expansion of