Operations Management

Slides:



Advertisements
Similar presentations
Operations Management
Advertisements

Decision Theory.
To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 3-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Prepared by.
Chapter 3 Decision Analysis.
Decision Analysis Chapter 3
Chapter 8: Decision Analysis
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 5S Decision Theory.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
DSC 3120 Generalized Modeling Techniques with Applications
Chapter 7 Decision Analysis
3 Decision Analysis To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power Point slides created by.
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Topic 2. DECISION-MAKING TOOLS
Decision Analysis Chapter 3
Decision Making Under Uncertainty and Under Risk
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
© 2008 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools PowerPoint presentation to accompany Heizer/Render Principles of.
Operations Management Decision-Making Tools Module A
Introduction Decision trees Decision trees enable one to look at decisions: alternativesstates of nature with many alternatives and states of nature which.
Operations Management Decision-Making Tools Module A
Operational Decision-Making Tools: Decision Analysis
Decision Analysis Chapter 3
© 2006 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany.
MA - 1© 2014 Pearson Education, Inc. Decision-Making Tools PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J A-1 Operations Management Decision-Making Tools Module A.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
An Introduction to Decision Theory (web only)
© 2006 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools © 2006 Prentice Hall, Inc. PowerPoint presentation for Operations.
Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J A-1 Operations.
Chapter 3 Decision Analysis.
LSM733-PRODUCTION OPERATIONS MANAGEMENT By: OSMAN BIN SAIF LECTURE 26 1.
3-1 Quantitative Analysis for Management Chapter 3 Fundamentals of Decision Theory Models.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Course Title: Qantitative Business Analysis - Dr:Galal I. Elabd Decision Theory [1] Dr: Galal I. Elabd Business Administration.
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
A - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall A A Decision-Making Tools PowerPoint presentation to accompany Heizer and Render Operations.
© 2008 Prentice Hall, Inc.A – 1 Decision-Making Environments  Decision making under uncertainty  Complete uncertainty as to which state of nature may.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Lecture 6 Decision Making.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Trees. Introduction Decision trees enable one to look at decisions: with many alternatives and states of nature which must be made in sequence.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
QUANTITATIVE TECHNIQUES
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
QUANTITATIVE TECHNIQUES
DECISION THEORY & DECISION TREE
Welcome to MM305 Unit 4 Seminar Larry Musolino
Slides 8a: Introduction
Steps to Good Decisions
Supplement: Decision Making
MNG221- Management Science –
Chapter 13 Decision Analysis
Decision Theory Analysis
Decision Analysis Decision Trees Chapter 3
Presentation transcript:

Operations Management Module A – Decision-Making Tools PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 7e Operations Management, 9e

Outline The Decision Process in Operations Fundamentals of Decision Making Decision Tables

Outline – Continued Types of Decision-Making Environments Decision Making Under Uncertainty Decision Making Under Risk Decision Making Under Certainty Expected Value of Perfect Information (EVPI)

Outline – Continued Decision Trees A More Complex Decision Tree Using Decision Trees in Ethical Decision Making

Learning Objectives When you complete this module you should be able to: Create a simple decision tree Build a decision table Explain when to use each of the three types of decision-making environments Calculate an expected monetary value (EMV)

Learning Objectives When you complete this module you should be able to: Compute the expected value of perfect information (EVPI) Evaluate the nodes in a decision tree Create a decision tree with sequential decisions

The Decision Process in Operations Clearly define the problems and the factors that influence it Develop specific and measurable objectives Develop a model Evaluate each alternative solution Select the best alternative Implement the decision and set a timetable for completion This slide provides some reasons that capacity is an issue. The following slides guide a discussion of capacity.

Fundamentals of Decision Making Terms: Alternative – a course of action or strategy that may be chosen by the decision maker State of nature – an occurrence or a situation over which the decision maker has little or no control This slide can be used to frame a discussion of capacity. Points to be made might include: - capacity definition and measurement is necessary if we are to develop a production schedule - while a process may have “maximum” capacity, many factors prevent us from achieving that capacity on a continuous basis. Students should be asked to suggest factors which might prevent one from achieving maximum capacity.

Fundamentals of Decision Making Symbols used in a decision tree:  – decision node from which one of several alternatives may be selected  – a state-of-nature node out of which one state of nature will occur This slide can be used to frame a discussion of capacity. Points to be made might include: - capacity definition and measurement is necessary if we are to develop a production schedule - while a process may have “maximum” capacity, many factors prevent us from achieving that capacity on a continuous basis. Students should be asked to suggest factors which might prevent one from achieving maximum capacity.

Decision Tree Example A decision node A state of nature node Favorable market Unfavorable market Construct large plant Favorable market Unfavorable market Construct small plant Do nothing Figure A.1

Decision Table Example State of Nature Alternatives Favorable Market Unfavorable Market Construct large plant $200,000 –$180,000 Construct small plant $100,000 –$ 20,000 Do nothing $ 0 $ 0 Table A.1

Decision-Making Environments Decision making under uncertainty Complete uncertainty as to which state of nature may occur Decision making under risk Several states of nature may occur Each has a probability of occurring Decision making under certainty State of nature is known

Uncertainty Maximax Find the alternative that maximizes the maximum outcome for every alternative Pick the outcome with the maximum number Highest possible gain This is viewed as an optimistic approach

Uncertainty Maximin Find the alternative that maximizes the minimum outcome for every alternative Pick the outcome with the minimum number Least possible loss This is viewed as a pessimistic approach

Uncertainty Equally likely Find the alternative with the highest average outcome Pick the outcome with the maximum number Assumes each state of nature is equally likely to occur

Uncertainty Example Maximax choice is to construct a large plant States of Nature Favorable Unfavorable Maximum Minimum Row Alternatives Market Market in Row in Row Average Construct large plant $200,000 -$180,000 $200,000 -$180,000 $10,000 Construct small plant $100,000 -$20,000 $100,000 -$20,000 $40,000 Do nothing $0 $0 $0 $0 $0 Maximax Equally likely Maximin Maximax choice is to construct a large plant Maximin choice is to do nothing Equally likely choice is to construct a small plant

Risk Each possible state of nature has an assumed probability States of nature are mutually exclusive Probabilities must sum to 1 Determine the expected monetary value (EMV) for each alternative

Expected Monetary Value EMV (Alternative i) = (Payoff of 1st state of nature) x (Probability of 1st state of nature) + (Payoff of 2nd state of nature) x (Probability of 2nd state of nature) +…+ (Payoff of last state of nature) x (Probability of last state of nature) It might be useful at this point to discuss typical equipment utilization rates for different process strategies if you have not done so before.

EMV Example EMV(A1) = (.5)($200,000) + (.5)(-$180,000) = $10,000 States of Nature Favorable Unfavorable Alternatives Market Market Construct large plant (A1) $200,000 -$180,000 Construct small plant (A2) $100,000 -$20,000 Do nothing (A3) $0 $0 Probabilities .50 .50 Table A.3 It might be useful at this point to discuss typical equipment utilization rates for different process strategies if you have not done so before. EMV(A1) = (.5)($200,000) + (.5)(-$180,000) = $10,000 EMV(A2) = (.5)($100,000) + (.5)(-$20,000) = $40,000 EMV(A3) = (.5)($0) + (.5)($0) = $0

EMV Example EMV(A1) = (.5)($200,000) + (.5)(-$180,000) = $10,000 States of Nature Favorable Unfavorable Alternatives Market Market Construct large plant (A1) $200,000 -$180,000 Construct small plant (A2) $100,000 -$20,000 Do nothing (A3) $0 $0 Probabilities .50 .50 Table A.3 It might be useful at this point to discuss typical equipment utilization rates for different process strategies if you have not done so before. EMV(A1) = (.5)($200,000) + (.5)(-$180,000) = $10,000 EMV(A2) = (.5)($100,000) + (.5)(-$20,000) = $40,000 EMV(A3) = (.5)($0) + (.5)($0) = $0 Best Option

Certainty Is the cost of perfect information worth it? Determine the expected value of perfect information (EVPI) It might be useful at this point to discuss typical equipment utilization rates for different process strategies if you have not done so before.

Expected Value of Perfect Information EVPI is the difference between the payoff under certainty and the payoff under risk EVPI = – Expected value with perfect information Maximum EMV Expected value with perfect information (EVwPI) = (Best outcome or consequence for 1st state of nature) x (Probability of 1st state of nature) + Best outcome for 2nd state of nature) x (Probability of 2nd state of nature) … + Best outcome for last state of nature) x (Probability of last state of nature)

Expected value with perfect information EVPI Example The best outcome for the state of nature “favorable market” is “build a large facility” with a payoff of $200,000. The best outcome for “unfavorable” is “do nothing” with a payoff of $0. Expected value with perfect information = ($200,000)(.50) + ($0)(.50) = $100,000

The most the company should pay for perfect information is $60,000 EVPI Example The maximum EMV is $40,000, which is the expected outcome without perfect information. Thus: EVPI = EVwPI – Maximum EMV = $100,000 – $40,000 = $60,000 The most the company should pay for perfect information is $60,000

Decision Trees Information in decision tables can be displayed as decision trees A decision tree is a graphic display of the decision process that indicates decision alternatives, states of nature and their respective probabilities, and payoffs for each combination of decision alternative and state of nature Appropriate for showing sequential decisions

Decision Trees

Decision Trees Define the problem Structure or draw the decision tree Assign probabilities to the states of nature Estimate payoffs for each possible combination of decision alternatives and states of nature Solve the problem by working backward through the tree computing the EMV for each state-of-nature node

Decision Tree Example EMV for node 1 = (.5)($200,000) + (.5)(-$180,000) EMV for node 1 = $10,000 Payoffs $200,000 -$180,000 $100,000 -$20,000 $0 Favorable market (.5) Unfavorable market (.5) 1 Construct large plant Construct small plant Do nothing Favorable market (.5) Unfavorable market (.5) 2 EMV for node 2 = $40,000 = (.5)($100,000) + (.5)(-$20,000) Figure A.2

Complex Decision Tree Example Figure A.3

Complex Example Given favorable survey results EMV(2) = (.78)($190,000) + (.22)(-$190,000) = $106,400 EMV(3) = (.78)($90,000) + (.22)(-$30,000) = $63,600 The EMV for no plant = -$10,000 so, if the survey results are favorable, build the large plant

Complex Example Given negative survey results EMV(4) = (.27)($190,000) + (.73)(-$190,000) = -$87,400 EMV(5) = (.27)($90,000) + (.73)(-$30,000) = $2,400 The EMV for no plant = -$10,000 so, if the survey results are negative, build the small plant

Complex Example Compute the expected value of the market survey EMV(1) = (.45)($106,400) + (.55)($2,400) = $49,200 If the market survey is not conducted EMV(6) = (.5)($200,000) + (.5)(-$180,000) = $10,000 EMV(7) = (.5)($100,000) + (.5)(-$20,000) = $40,000 The EMV for no plant = $0 so, given no survey, build the small plant

Decision Trees in Ethical Decision Making Maximize shareholder value and behave ethically Technique can be applied to any action a company contemplates

Decision Trees in Ethical Decision Making Do it Don’t do it Do it, but notify appropriate parties Action outcome Yes No Yes Is it ethical? (Weigh the affect on employees, customers, suppliers, community verses shareholder benefit) Yes Does action maximize company returns? No Is it ethical not to take action? (Weigh the harm to shareholders verses benefits to other stakeholders) Is action legal? No Figure A.4