The Optimized Sensor Segmentation for the Very Forward Calorimeter

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
LCWS 2005 SLAC, March 19 Low Angle Bhabha Events and Electron Veto. Comparison Between Different Crossing Angle Designs Vladimir DrugakovNC PHEP, Minsk/DESY.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
L. Suszycki, Tel Aviv, Sept, 2005 LumiCal background studies Contents: Guinea Pig results Vermasseren results Remarks on energy reconstruction Conclusions.
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Effect of the Shape of the Beampipe on the Luminosity Measurement September 2008 Iftach Sadeh Tel Aviv University DESY.
Angular resolution study of isolated gamma with GLD detector simulation 2007/Feb/ ACFA ILC Workshop M1 ICEPP, Tokyo Hitoshi HANO collaborated with Acfa-Sim-J.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Simulation of physics background for luminosity calorimeter M.Pandurović I. Božović-Jelisavčić “Vinča“ Institute of Nuclear Sciences, Belgrade, SCG.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Ivan Smiljanić Vinča Institute of Nuclear Sciences, Belgrade, Serbia Energy resolution and scale requirements for luminosity measurement.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
LHCf Report Takashi SAKO for the LHCf Collaboration 18-Dec-2009 CERN Main Auditorium.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
A Luminosity Detector for the Future Linear Collider Ronen Ingbir Prague Workshop HEP Tel Aviv University.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
2° ILD Workshop Cambridge 11-14/09/08 The sensitivity of the International Linear Collider to the     in the di-muon final state Nicola D’Ascenzo University.
1 Some results from LumiCal Monte Carlo Studies Michał Karbowiak, B. Pawlik, L. Zawiejski Michał Karbowiak (*), B. Pawlik, L. Zawiejski Institute of Nuclear.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
7/13/2005The 8th ACFA Daegu, Korea 1 T.Yoshioka (ICEPP), M-C.Chang(Tohoku), K.Fujii (KEK), T.Fujikawa (Tohoku), A.Miyamoto (KEK), S.Yamashita.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
Electron Identification Efficiency of the BeamCal (modified SiD02) Jack Gill, Uriel Nauenberg, Gleb Oleinik University of Colorado at Boulder 3 March 2009.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
1 JINR participation in the International Linear Collider Physics and Detector R&D A.Olchevski 99 Session of JINR Scientific Council 19 January 2006 Beam.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
On behalf of the Acfa-Sim-J Group
CEPC ScECAL Optimization for the 3th CEPC Physics Software Meeting
BeamCal Simulation for CLIC
The very forward region Tel-Aviv meeting summary
Maria Person Gulda , Uriel Nauenberg, Gleb Oleinik,
Report about “Forward Instrumentation” Issues
Linear Collider Simulation Tools
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Beamdiagnostics by Beamstrahlung Pair Analysis
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
LAT performance studies
Workshop on Forward Calorimetry Prague, April 16 Impact of Bhabha scattering on the BeamCal performances Vladimir Drugakov NC PHEP, Minsk/DESY Zeuthen.
GLD IR optimization and background study
Linear Collider Simulation Tools
COMPTON SCATTERING IN FORWARD DIRECTION
Presentation transcript:

The Optimized Sensor Segmentation for the Very Forward Calorimeter International Linear Collider Physics and Detector Workshop Snowmass, Colorado, August 14-27, 2005 The Optimized Sensor Segmentation for the Very Forward Calorimeter Andrey Elagin JINR Dubna

Beam Calorimeter identification and measurement of the high main parameters beam diagnostic identification and measurement of the high energy particles Diamond-tungsten Distance from the IP, cm 370 min – max, mrad 4 – 28 Rmin – Rmax , cm 1.5 – 10 Sensor thickness, mm 0.5 Absorber thickness, mm 3.5 Number of layers 30 X0, mm 4 Rmolier, mm 10 Technologies for the BeamCal: 1) Silicon-tungsten or diamond-tungsten sandwich calorimeter 2) PbWO4 crystal

Background from the beamstrahlung BeamCal will be hit by beamstrahlung remnants carrying about 20 TeV of energy per bunch crossing. Energy deposition in diamond rings per one bunch r- distribution per one bunch Severe background for electron identification

Particle identification in the BeamCal Motivation The Physics: SUSY particles production  ~ 102 fb Signature: + - + missing energy The Background: two photons event  ~ 106 fb Signature: + - + missing energy (if electrons are not tagged) Excellent electron identification is needed down to as small angle as possible

Segmentation Optimization Study motivation 4 mm 5 mm Nrings 20 Ncells 1660 Nchannels 49 800 Nrings 16 Ncells 1072 Nchannels 32 160 8 mm 10 mm Nrings 10 Ncells 430 Nchannels 12 900 Nrings 8 Ncells 264 Nchannels 7 920

Particle identification in the BeamCal simulation chain Generator: GuineaPig for e+e- from beamstrahlung or “Rndm” for electrons to be reconstructed GEANT4 BeamCal simulation Summator C++ code to sum Edep per cell according to the r- segmentation ASCII-file or ROOT-file 4-momentum vertex position ROOT-file for hits (G4Step) side ID layer ID X,Y position energy deposition

Particle identification in the BeamCal simulation chain BG sample Electron Finder (V. Drugakov) Summator Erec rec Rrec electrons sample Since actual parameters (Esim, sim, Rsim) of the electrons are known from the simulation one can extract efficiency of the electron identification from the eFiner output.

Particle identification in the BeamCal Electron Finder from V. Drugakov Use 10 events to define <Ebg> and RMSEbg for each pad. For signal event subtract <Ebg> from Edep for each pad. Keep pads with remaining Edep larger than 5·RMSEbg. Search along each segment: cluster is found if there are more than 7 pads in the segment and more than 4 pads within at least one neighbor segment. BG particle “event”

Particle identification in the BeamCal Electron Finder from V. Drugakov 100 GeV electron on top of the beamstrahlung Subtraction of average background

Energy reconstruction No background 5 mm calibration intrinsic resolution 23%/E

Energy reconstruction electrons on top of the background Energy deposited in diamond for 200 GeV electrons low BG region ( ~ 0°) 5mm 10mm Blue – all events, red – 2·Rmolier from edges

Energy reconstruction electrons on top of the background Low BG region ( ~ 0°) 5 mm resolution calibration 130%/E

Cuts for reconstructed particles Electrons are considered as reconstructed if: Efit - 3fit < Erec < Efit + 3fit Rsim – CellSize/2 < Rrec < Rsim + CellSize/2 sim• Rsim – CellSize/2 < rec• Rrec < sim• Rsim + CellSize/2 Efit and fit are defined from the distribution of the reconstructed energy for events in the middle of the BeamCal

Particle identification efficiency electrons 200 GeV Low BG ( ~ 0°) High BG ( ~ 90°) 5mm 8mm 10mm 5mm 8mm 10mm

Inefficiency in particle identification Lost particles for R < 55 mm Inefficiency to identify 200 GeV electrons High BG ( ~ 90°) Low BG ( ~ 0°)

Summary Complete simulation chain for BeamCal exist: – GEANT4 based simulation (A. Elagin) (crossing angle options are available, implemented by V.Drugakov) – eFinder for electron identification (V. Drugakov) 5 mm segmentation is the best for electron identification at small radii 8 mm – is not too bad 10 mm segmentation gives 100% efficiency for R > 55 mm