The Binomial Expansion Chapter 7

Slides:



Advertisements
Similar presentations
Digital Lesson The Binomial Theorem.
Advertisements

Year 12 C1 Binomial Theorem. Task Expand the following: 1. (x + y) 1 2. (x + y) 2 3. (x + y) 3 4. (x + y) 4 What do you notice? Powers of x start from.
Ms. Nong Digital Lesson (Play the presentation and turn on your volume)
SFM Productions Presents: Another adventure in your Pre-Calculus experience! 9.5The Binomial Theorem.
Monday: Announcements Progress Reports this Thursday 3 rd period Tuesday/Wednesday STARR Testing, so NO Tutorials (30 minute classes) Tuesday Periods 1,3,5,7.
The Binomial Theorem.
What does Factorial mean? For example, what is 5 factorial (5!)?
2.4 Use the Binomial Theorem Test: Friday.
BINOMIAL EXPANSION. Binomial Expansions Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The binomial theorem provides a useful method.
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
5-7: The Binomial Theorem
Lesson 6.8A: The Binomial Theorem OBJECTIVES:  To evaluate a binomial coefficient  To expand a binomial raised to a power.
Copyright © Cengage Learning. All rights reserved. 8.4 The Binomial Theorem.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
Binomial – two terms Expand (a + b) 2 (a + b) 3 (a + b) 4 Study each answer. Is there a pattern that we can use to simplify our expressions?
Copyright © Cengage Learning. All rights reserved. 8 Sequences, Series, and Probability.
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
2-6 Binomial Theorem Factorials
2.6 Pascal’s Triangle and Pascal’s Identity (Textbook Section 5.2)
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
7.1 Pascal’s Triangle and Binomial Theorem 3/18/2013.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.

8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
Combination
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
Chapter 12.5 The Binomial Theorem.
Splash Screen.
Sequences, Series, and Probability
The Binomial & Multinomial Coefficients
The binomial expansions
Pascal’s Triangle and the Binomial Theorem
Copyright © Cengage Learning. All rights reserved.
Section 9-5 The Binomial Theorem.
Use the Binomial Theorem
The Binomial Theorem Ms.M.M.
A quick and efficient way to expand binomials
The Binomial Theorem; Pascal’s Triangle
Use the Binomial Theorem
Ch. 8 – Sequences, Series, and Probability
The Binomial Theorem Objectives: Evaluate a Binomial Coefficient
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
10.2b - Binomial Theorem.
Binomial Expansion.
Digital Lesson The Binomial Theorem.
Digital Lesson The Binomial Theorem.
TCM – DO NOW A peer believes that (a+b)3 is a3 + b3 How can you convince him that he is incorrect? Write your explanation in your notes notebook.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Use the Binomial Theorem
11.9 Pascal’s Triangle.
11.6 Binomial Theorem & Binomial Expansion
Digital Lesson The Binomial Theorem.
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
Chapter 12 Section 4.
©2001 by R. Villar All Rights Reserved
Digital Lesson The Binomial Theorem.
The binomial theorem. Pascal’s Triangle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
Digital Lesson The Binomial Theorem.
Digital Lesson The Binomial Theorem.
HW: Finish HPC Benchmark 1 Review
The Binomial Theorem.
Warm Up 1. 10C P4 12C P3 10C P3 8C P5.
Presentation transcript:

The Binomial Expansion Chapter 7

Consider the patterns formed by expanding (x + y)n. The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power. Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 1th term (x + y)1 = x + y 2th terms (x + y)2 = x2 + 2xy + y2 3th terms (x + y)3 = x3 + 3x2y + 3xy2 + y3 4th terms (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 5th terms 6th terms (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 Notice that each expansion has n + 1 terms. Example: (x + y)10 will have 10 + 1, or 11 terms. Binomial Expansions

Consider the patterns formed by expanding (x + y)n. (x + y)1 = x + y (x + y)2 = x2 + 2xy + y2 (x + y)3 = x3 + 3x2y + 3xy2 + y3 (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 1. The exponents on x decrease from n to 0. The exponents on y increase from 0 to n. 2. Each term is of degree n. Example: The 5th term of (x + y)10 is a term with x6y4.”

The triangular arrangement of numbers below is called Pascal’s Triangle. 0th row 1 1 1 1th row 1 + 2 = 3 1 2 1 2th row 1 3 3 1 3th row 6 + 4 = 10 1 4 6 4 1 4th row 1 5 10 10 5 1 5th row Each number in the interior of the triangle is the sum of the two numbers immediately above it. The numbers in the nth row of Pascal’s Triangle are the binomial coefficients for (x + y)n .

This can be done using Pascal’s triangle. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1

Pascal’s Triangle

Example: Pascal’s Triangle Example: Use Pascal’s Triangle to expand (2a + b)4. 1 1 1st row 1 2 1 2nd row 1 3 3 1 3rd row 1 4 6 4 1 4th row 0th row 1 (2a + b)4 = 1(2a)4 + 4(2a)3b + 6(2a)2b2 + 4(2a)b3 + 1b4 = 1(16a4) + 4(8a3)b + 6(4a2b2) + 4(2a)b3 + b4 = 16a4 + 32a3b + 24a2b2 + 8ab3 + b4 Example: Pascal’s Triangle

Examples

Example Answers

Example Answers (cont.)

Example Answers (cont.)

Example Answers (cont.)

Homework Page 182 Problems 1 , 3 , 4 , 9