Possibility of precise

Slides:



Advertisements
Similar presentations
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Advertisements

October 14, 2009 Tsutomu Mibe ( 三部 勉) KEK 1.
Hydrogen in Wide Gap Semiconductor Why many types of wide gap semiconductor have n type conductivity ? K.Shimomura (KEK- MSL)
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
Muon g-2 experimental results & theoretical developments
Frictional Cooling Studies at Columbia University/Nevis Labs Raphael Galea, Allen Caldwell + Stefan Schlenstedt (DESY/Zeuthen) Halina Abramowitz (Tel Aviv.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
A new method of measuring the muon g-2 Francis J.M. Farley Trinity College Dublin.
G-2 and the future of physics Student: A.C. Berceanu Supervisors: Olaf Scholten Gerco Onderwater.
PAIR SPECTROMETER DEVELOPMENT IN HALL D PAWEL AMBROZEWICZ NC A&T OUTLINE : PS Goals PS Goals PrimEx Experience PrimEx Experience Design Details Design.
Measurement of the Positive Muon Lifetime to 1 ppm David Webber Preliminary Examination March 31, 2005.
The LHC: an Accelerated Overview Jonathan Walsh May 2, 2006.
Goals and Status of MICE The International Muon Ionization Cooling Experiment J.S. Graulich.
FFAG-Workshop 2006, Kumatori, Osaka, Japan Injection study for 6-sector PRISM FFAG by using pulsed alpha particles Yasushi Arimoto, Toshiyuki Oki, Makoto.
WG4 Summary -Intense Muon Physics- Conveners Y. Semertzdis (BNL), M. Grassi (Pisa), K. Ishida (RIKEN) summary-1 for muon applications by K. Ishida.
Target & Capture for PRISM Koji Yoshimura Institute of Particle and Nuclear Science High Energy Accelerator Research Organization (KEK)
Spin at J-PARC Naohito Saito for Shoji Nagamiya. Executive Summary Spin physics at J-PARC, now The facility is starting up; Only spin physics would be.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Study of Pion Capture Solenoids for PRISM H.Ohnishi AB M. Aoki C, Y. Ajima A, N. Fukasawa AD, K. Ishibashi B, Y. Kuno C, T. Miura A, K. Nakahara C, T.
1 Muon Collider/Higgs Factory A. Caldwell Columbia University Motivation Difficulties Focus on Cooling (frictional cooling)
Energy calibration at LHC J. Wenninger. Motivation In general there is not much interest for accurate knowledge of the momentum in hadron machines. 
M. Aoki Translation of slides in 2010 JPS meeting (Okayama) By K. Shimomura and M. Aoki M. Aoki A , T. Ebihara A , N. Kawamura , Y. Kuno A , P. Strasser.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
PrimEx collaboration meeting Energy calibration of the Hall B bremsstrahlung tagging system using magnetic pair spectrometer S. Stepanyan (JLAB)
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
G-2 accelerator and cryo needs Mary Convery Muon Campus Review 1/23/13.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
April 23, 2008 Workshop on “High energy photon collisions at the LHC 1 Cem Güçlü İstanbul Technical University Physics Department Physics of Ultra-Peripheral.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
Review of τ -mass measurements at e + e - - colliders Yury Tikhonov (Budker INP) Contents  Introduction  Current status of τ-mass measurements and μτ.
COMET and DeeMe. Mu-e conversion search at J-PARC COMET Target sensitivity 10 C.L. using aluminum target – SINDRUM II 7x – MEG 2.4x
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Muonium – Physics of a Most Fundamental Atom Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic.
Frictional Cooling A.Caldwell MPI f. Physik, Munich FNAL
Muon Anomalous Magnetic Moment --a harbinger of new physics Chang Liu Physics 564.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
E + e - hadronic cross section and muon g-2 Brendan Casey PIC 2014 September 17, 2014 Sept 11, 2014 muon g-2 experimental hall.
Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Precision Measurements in Muon Physics A Sampler of Fundmental Measurements.
The Past, Present and Future of Muonium Memorial Symposium in Honor of Vernon Willard Hughes Yale University, November 14-15, 2003 Klaus Jungmann Kernfysisch.
Yannis K. Semertzidis Brookhaven National Laboratory HEP Seminar SLAC, 27 April 2004 Muon g-2: Powerful Probe of Physics Beyond the SM. Present Status.
After Protons from RCS 1 st DeeMe Collaboration Meeting Dec. 10, 2012 Kazami Yamamoto J-PARC Center Accelerator Division.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration 3 rd Joint NIPNET ION-CATCHER HITRAP Collaboration.
1 Muon g-2 Experiment at BNL Presented by Masahiko Iwasaki (Tokyo Institute of Technology) Akira Yamamoto (KEK) for E821 g-2 Collaboration: Boston, BNL,
Kevin Lynch MuLan Collaboration Boston University CIPANP 2006 A new precision determination of the muon lifetime Berkeley, Boston, Illinois, ITU, James.
Muon Facility at J-PARC Proton Driver Efficiency WS 29/Feb/2016
PHySES Positronium Hyperfine Structure of the first Excited State:
First results from the MuLan and MuCap experiments
Optimization of Triplet Field Quality in Collision
The COMET Experiment Ajit Kurup, Imperial College London, on behalf of the COMET Collaboration. ABSTRACT The COherent Muon to Electron Transition (COMET)
G. Arnison et al., UA1 Collaboration
Lasers and effects of magnetic field
Status of the VEPP-2000 Collider Project at Novosibirsk
BEAMLINE MAGNETS FOR ALPHA-G
A Precision Measurement of GEp/GMp with BLAST
Progress on J-PARC hadron physics in 2016
The Free Electron Fermi Gas
Parasitic Run Physics Simulations
Present status of Mu HFS experiment at J-PARC
K. Tilley, ISIS, Rutherford Appleton Laboratory, UK Introduction
Impact of neutrino interaction uncertainties in T2K
Search for Exotic Hadrons, H-dibaryon resonance and Pentaquark
Particle Physics: Status and Perspectives Part 8: The Precision Frontier Manfred Jeitler SS 2018.
ACCELERATORS AND DETECTORS
COherent Muon to Electron Transition (COMET)
Presentation transcript:

     Possibility of precise        measurements of muonium HFS at J-PARC MUSE K.Shimomura (KEK)

First reported at 1960, 50 years old this year! 持出厳禁 Muonium Hydrogen Muonium Positive Muon Proton Electron Electron First reported at 1960, 50 years old this year!

Muonium Energy Level Fine Structure explained by Dirac Classic Lamb Shift QED Tomonaga, Shwinger, Feynman Not included QED weak hadronic correction

Muonium Pure leptonic bound system, free from finite size effect. Good example for testing QED, HFS,1s-2s, Lamb shift Muonium ground state hyperfine interval measurement is related to Determination of fine structure constant a Test of CPT and Lorentz Invariance related muon g-2 experiment

QED Consistency : Fine structure a

Test of CPT and Lorentz Invariance (V. W. Hughs et al. , Phys. Rev Test of CPT and Lorentz Invariance (V. W. Hughs et al., Phys. Rev. Lett. 87, 111804 (2001). Effective Lagragean predicts sidereal time change of muonium frequency.

Why Muonium HFS measurement is so important? g-2 E821(BNL) 0.5ppm 3s deviation -measurement of the deviation of muon spin direction(ws) and muon momentum direction(wc) wa∝(g-2)/2=am    -The ratio to proton NMR frequency is important!  mm/mp accuracy from direct measurement 0.12ppm  W. Liu et al., Phys. Rev. Lett. 82, 711 (1999). q am an independent precise muon mass measurement is required ⇒ From g-2 strage ring From Muonium HFS

mm/me (or mm/mp) accuracy

Relationship of muon percise measuremnet by K.Jungmann μ g-2 → hadronic contributions → weak contributions → New Physics μμ, α, gμ QED mμ QED 2 ・ mμ ・ c ・ σ → μμ = gμ ・ e ・ h - μ+ e- ΔνHFS, n=1 → μμ → α → QED corrections → weak contributions μ+ e- Δν1S-2S → mμ → QED corrections mμ QED

Muonium Hamiltonian Im muon spin J electron spin mmB muon Bohr magneton   meB electron Bohr magneton g’m  gyromagnetic ratio of electron in bound muonim gJ  gyromagnetic ratio of muon in bound muonim Dn ground state muonium hyperfine constant

Breit Rabi Diagram m e

m+ OFF Resonance F.G. Mariam et al., Phys. Rev. Lett. 49, 993 (1982).

m ON Resonance F.G. Mariam et al., Phys. Rev. Lett. 49, 993 (1982).

Los Alamos experimental set up

W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).

Only TMmn0 modes have no z axis dependence for cylindrical or rectangular cavity. TM110 for n12 =c2*((j11/p*R)2+(0/h)2)1/2=1897.5MHz TM210 for n34 =c/2*((j21/p*R)2+(0/h)2)1/2=2565.8MHz j11=3.832,j21=5.136 R=9.6cm

Old Muonium Method Delay time gate shows more sharp resonance !

Results of Los Alamos Experiment n12=1897539800(35)Hz (18ppb), n34=2565762965(43)Hz (17ppb) Dn=4463302765(53)Hz (12ppb), mm/mp=3.18334513(39) (120ppb) Combine the pervious results Dn=4463302776(51)Hz (12ppb), mm/mp=3.18334524(37) (120ppb) (93% Error comes from statistical error) Muon mass determination Where, gm=2(1+am) am=0.01165923(8.5) (gm error 4ppb)     meB/mp=1.521032202(15) (1ppb) mm/me=206.768277(24) (120ppb)

Sources of uncertainty at Los Alamos Experiment

Statics at Los Alamos Experiment Beam intensity  a few × 107/s Beam structure Quasi DC 4ms ON 10ms OFF Therefore actual beam intensity 107/s 1 run 10s×120 step Total 1270 run (magnetic field scan 200 run, Micro wave scan 1070 run) Total Muon   1013

How to improve the accuracy of mm/mp? Comparison between theoretical and experimental value of Dn where, recoil term 800kHz(120ppm) and so on are included. R∞=10973731.568639(91)m-1(0.09ppt)          (Cs atomic beam interferometory) a-1=137.03599958(52) (3.8ppb)         (from electron g-2) mm/me=206.7682670(55) (27ppb), mm/mp=3.183345396(94) (30ppb) This value is used for the determination of g-2.

Summary of Los Alamos Experiment     Dn=4463302776(51)Hz (12ppb),   mm/mp=3.18334524(37) (120ppb)    ・old muonium method  ←Pulsed muon beam is ideal !  ・Total muon 1013 statiscal error is dominant(93%)  → If we will get100 times muon, one order improvement is possible !  ・Muonium is formed at Kr gas  →Intense low energy (<4MeV) beam is requiered ! →only possible @J-PARC/MUSE!!

Status of J-PARC MUSE @MLF Pulsed proton beam3GeV,333mA,1MW 25Hz 持出厳禁 ミュオン施設 Status of J-PARC MUSE @MLF Pulsed proton beam3GeV,333mA,1MW 25Hz 2cm carbon graphite target SuperOmega Proton Energy (GeV) Beam Intensity (mA) Structure Muon Intensity m+ / s KEK-MSL 0.5 5 Pulsed 2.5 x 104 RAL 0.8 200 1.5 x 106 PSI 3000 DC ~5×108 J-PARC(D) 3 333 1.5 x 107 SuperOmega 4 x 108 Current Beam Intensity(4MeVsurface) 1.8×106/s@120kW World strongest pulsed muon ! (1.5×107/s@1MW)

Acceptance estimation at D2 by G4Beamline G4Beamline model of D2 beam line 28 MeV/c μ Acceptance for Injection Part:40 msr Beam Loss at Q-triplet

Improvement for D line extraction About 50% Loss due to small Q (20cm). →We fabricated new two quadrupole magnets, and will install at this summer. ⇒ 3.0×107/s(@1MW) Small Q

The Super Omega Muon Beamline Build the highest intensity pulsed muon beamline in the world Capture both cloud - and surface + 400mSr (J-PARC SC BL: ~40 mSr) Consists of three sections: Normal conducting capture solenoid (installed!) Superconducting transport solenoid (Final design stage) Axial focusing magnet (Design stage) Surface m+ 4×108/s Design work Y.Ikedo, K.Nakahara et al. Collaborated with J-PARC cryogenic section

Possible Setup for Muonium HFS measurement J-PARC MUSE Capture Solenoid ~ 0.3T 400mSr  1m Axial focusing coils Beam focus  Superconducting Curved Solenoid ~2T beam transport efficiently     Reduce B.G.(n,g)   P/N Muon selection by Dipoles Muonium HFS Detector Solenoid ~1.7T ppm accuracy     Highky segmented detctors Micro Wave Kr

Expectes Statics at J-PARC MUSE Beam Intensity @Super Omega  4 ×108/s Beam structure Pulsed Total Beam Time 100 days Total Muon   3.4 × 1015 300 times statics ! This is ideal ! Beam Intensity @D2 0.9×107/s @0.3MW(next few years) 3.0×107/s @1MW(goal) 50 days run makes 15 times higher statics.

Issues Magnetic Field 1.7T? Higher Field helps the accuracy of mm/mp. 持出厳禁 Issues  Magnetic Field 1.7T?   Higher Field helps the accuracy of mm/mp. However, the decay positron orbit is confined. ⇒ Need optimization.  Required Uniform Region 1ppm accuracy 20cm diamater,20cm length Stability 10-7~10-8/h Consider about muon stopping region and cavity (shape,size)   Detector Scintillating fiber? GEM? Kr Pressure Shift Mu in vacuum (from SiO2)

Summary Determination of fine structure constant a Muonium ground state hyperfine interval measurement is related to Determination of fine structure constant a Test of CPT and Lorentz Invariance Also important for precise determination of mm/mp New generation of Muonium HFS measurements should be started at J-PARC MUSE as soon as possible !

mm/mp Direct Measuremnet K.M.Crowe et al., Phys.Rev.D5,2145 (1972) mm/mp=3.1833467(82) (2600ppb) E.Klempt et al., Phys.Rev.D25,652 (1982) Liq.Br中でのmSR mm/mp=3.1833432(17) (530ppb) Uncertainty of magneti field(ppm) Stroboscopic measurement