Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapour and Vertical Humidity.

Slides:



Advertisements
Similar presentations
Slide 1 Improved Initialization for Precipitation Forecasts: Analysis of the ETReC missions during COPS 2007 Andreas Dörnbrack, Martin Wirth, and George.
Advertisements

Vertical distribution of ash at source Time-height plots of mass concentration at Chilbolton. The height above the summit into which ash particles are.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapor and Vertical Humidity Fluxes.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapour and Vertical Humidity.
Example Science Applications of SABER Processed Data.
C. Flamant (1), C. Champollion (1,2), S. Bastin (1) and E. Richard (3) (1) Institut Pierre-Simon Laplace, UPMC/CNRS/UVSQ (2) Géosciences Montpellier UM2/CNRS,
(Program Director: George Komar)
Quantification of the sensitivity of NASA CMS-Flux inversions to uncertainty in atmospheric transport Thomas Lauvaux, NASA JPL Martha Butler, Kenneth Davis,
CalWater2 Gulfstream-IV Measurements Janet Intrieri NOAA/Earth System Research Laboratory April 23, 2014.
Uncertainty in Cloud Aerosol Transport System (CATS) Products and Measurements Presented by Patrick Selmer Goddard advisor: Dr. Matthew McGill Assisted.
The Atmospheric Boundary Layer (ABL) over Mesoscale Surface Heterogeneity 25 June 2009 Song-Lak Kang Research Review.
Snowmass, 18 July 2007 Impact Studies with Airborne Doppler Lidar Observations: A-TReC to T-PARC Martin Weissmann, Andreas Dörnbrack, Stephan Rahm, Oliver.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
Institut für Physik der Atmosphäre WG4: Data Assimilation and Predictability George C. Craig DLR-Institut für Physik der Atmosphäre.
Atmospheric phase correction for ALMA Alison Stirling John Richer Richard Hills University of Cambridge Mark Holdaway NRAO Tucson.
CNRM activities during CarboEurope Regional Experiment Strategy - forecasting support - wind profiler - Ceilometer - Radiosonde soundings - Surface flux.
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Water vapour intercomparison effort in the frame of the Convective and Orographically-induced Precipitation Study 6th COPS Workshop 27 – 29 February 2008.
TRACKS-COPS Focus Convective trace gas and aerosol transport Objectives Transport Processes (and Precipitation Formation) in Convective Systems Influence.
Institut für Physik der Atmosphäre ETReC 2007 George C. Craig DLR-Institut für Physik der Atmosphäre.
Institut für Physik der Atmosphäre POLDIRAD Polarization Diversity Doppler Radar Martin Hagen DLR Oberpfaffenhofen.
VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF COHERENT ECHO PLUMES IN THE CONVECTIVE BOUNDARY LAYER, DETECTED BY A PROFILING AIRBORNE RADAR Atmospheric.
A-SCOPE Advanced Space Carbon and Climate Observation of Planet Earth MAG: F.M. Breon, H. Dolman, G. Ehret, P. Flamant, N. Gruber, S. Houweling, M. Scholze,
Institut für Physik der Atmosphäre ETReC 2007 Hans Volkert (for George Craig) DLR-Institut für Physik der Atmosphäre.
Scanning Raman Lidar Error Characteristics and Calibration For IHOP David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC Paolo Di Girolamo/Univ. of Basilicata,
Ben Kravitz November 5, 2009 LIDAR. What is LIDAR? Stands for LIght Detection And Ranging Micropulse LASERs Measurements of (usually) backscatter from.
David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC
Campaign data for parameterization tests: Examples from MAP‘99 VERTIKATOR’02, AWIATOR‘03 Hans Volkert, Thorsten Fehr, Christoph Kiemle, Oliver Reitebuch,
Application of a High-Pulse-Rate, Low-Pulse-Energy Doppler Lidar for Airborne Pollution Transport Measurement Mike Hardesty 1,4, Sara Tucker 4*,Guy Pearson.
Science Objectives for the ATHENA-OAWL Venture Tech Airborne Mission M. Hardesty CIRES University of Colorado/NOAA S. Tucker and C. Weimer Ball Aerospace.
Water Vapour Intercomparison Effort in the Frame of the Convective and Orographically-Induced Precipitation Study: Airborne-to-Ground-based and airborne-to-airborne.
Utility of Doppler Wind Lidars in cloudy conditions For Marty Ralph Provided by Dave Emmitt per request by Wayman Baker 1.
Kick-Off-Treffen SPP, Bonn October 2006 Improved Water Vapour and Wind Initialisation for Precipitation Forecasts: Impact Studies with the ECMWF.
Optical Measurements of Aerosols for MIRAGE-MEX University of Iowa Bill Eichinger John Prueger Piotr Lewandowski Heidi Holder.
Lidar Working Group on Space-Based Winds, Snowmass, Colorado, July 17-21, 2007 A study of range resolution effects on accuracy and precision of velocity.
NARVAL South Lutz Hirsch, Friedhelm Jansen Sensor Synergy While Radars and Lidars provide excellent spatial resolution but only ambiguous information on.
IHOP Workshop – Toulouse – June 2004 Multiscale Analyses of Moisture Transport by the Central Plains Low-Level Jet during IHOP Edward I. Tollerud 1, Brian.
Problems and Future Directions in Remote Sensing of the Ocean and Troposphere Dahai Jeong AMP.
Dehydration in the Tropical Tropopause Layer of a Cloud- Resolving Model University of Reading, Department of Meteorology * DLR Oberpfaffenhofen, Institut.
Observations and Models of Boundary-Layer Processes Over Complex Terrain What is the planetary boundary layer (PBL)? What are the effects of irregular.
Scaling Surface and Aircraft Lidar Results for Space-Based Systems (and vice versa) Mike Hardesty, Barry Rye, Sara Tucker NOAA/ETL and CIRES Boulder, CO.
27-May-16Working Group on Spacebased Lidar Winds Current Lidar Activities at ETL Mike Hardesty and Alan Brewer NOAA Environmental Technology Laboratory.
IHOP Workshop, Boulder, CO, March, 2003 DLR-DIAL Observations Instrument PI: Gerhard Ehret Instrument operation: Gorazd Poberaj, Andreas Fix, Martin.
IHOP Operations Plan, Chapter 7: Other Special Ground-Based Instrumentation Operation Frédéric Fabry et al. General overview Instrument deployment and.
2 nd International EULAG Workshop, Sopot, Poland 14 Sep 2010 Modeling flows through canopies with immersed boundary methods Andreas Dörnbrack and Christian.
Institut für Physik der Atmosphäre Rayleigh-Brillouin Scattering Experiment with Atmospheric Lidar from a Mountain Observatory Oliver Reitebuch, Christian.
Institut für Physik der Atmosphäre Rayleigh-Brillouin Scattering in N 2, O 2, and Air Oliver Reitebuch 1, Benjamin Witschas 1, Ofelia Vieitez 2, Eric-Jan.
LASE Measurements During IHOP Edward V. Browell, Syed Ismail, Richard A. Ferrare, Susan A Kooi, Anthony Notari, and Carolyn F. Butler NASA Langley Research.
Substructure of a MAP-Streamer Mark A. Liniger (MeteoSwiss) Huw C. Davies (IACETH) QJRMS, 129, (MAP special issue) 12 UTC 6 Nov 1999 (MAP IOP-15)
Toulouse IHOP meeting 15 June 2004 Water vapour variability within the growing convective boundary layer of 14 June 2002 with large eddy simulations and.
Institut für Physik der Atmosphäre DLR Contribution to the THORPEX Pacific Asian Regional Campaign T-PARC O. Reitebuch, M. Weissmann DLR Oberpaffenhofen.
Airborne Measurement of Horizontal Wind and Moisture Transport Using Co-deployed Doppler and DIAL lidars Mike Hardesty, Alan Brewer, Brandi McCarty, Christoph.
C. J. Senff, R. J. Alvarez II, R. M. Hardesty, A. O. Langford, R. M. Banta, W. A. Brewer, F. Davies, S. P. Sandberg, R. D. Marchbanks, A. M. Weickmann.
This is tes box Multi-scale Analyses of Moisture and Winds during the 3 and 9 June IHOP Low-Level Jet Cases Edward Tollerud, Fernando Caracena, Adrian.
Airborne/ground-based sensor intercomparison: SRL/LASE Paolo Di Girolamo, Domenico Sabatino, David Whiteman, Belay Demoz, Edward Browell, Richard Ferrare.
October 02, st IHOP_2002 Water Vapor Intercomparison Workshop Status of intercomparisons and the next steps  Characterize moisture measuring techniques.
Andreas Behrendt 25 March 2003IHOP Workshop IHOP Intercomparisons Selection of Case Studies & First Quicklooks Andreas Behrendt, Thorsten Schaberl, Hans-Stefan.
A new method for first-principles calibration
NOAA Airborne Doppler Update Mike Hardesty, Alan Brewer, Brandi McCarty and Christoph Senff NOAA/ETL and University of Colorado/CIRES Gerhard Ehret, Andreas.
ISTP 2003 September15-19, Airborne Measurement of Horizontal Wind and Moisture Transport Using Co-deployed Doppler and DIAL lidars Mike Hardesty,
Large Eddy Simulations of Entrainment and Inversion Structure Alison Fowler (MRes Physics of Earth and Atmosphere) Supervisor: Ian Brooks Entrainment Zone.
Meteorological Variables 1. Local right-hand Cartesian coordinate 2. Polar coordinate x y U V W O O East North Up Dynamic variable: Wind.
LIDAR Ben Kravitz November 5, 2009.
LASE Measurements of Water Vapor During IHOP
Edward I. Tollerud1, Brian D. Jamison2, Fernando Caracena1, Steven E
Refractivity During IHOP_2002
Doppler Lidar Measurements at DLR
Presentation transcript:

Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapour and Vertical Humidity Fluxes during IHOP Christoph Kiemle, G. Ehret, A. Fix, H. Flentje, G. Poberaj, M. Wirth (DLR) R. M. Hardesty, W. A. Brewer, S. P. Sandberg (NOAA) IHOP Workshop, June 2004, Toulouse Overview Differential-Absorption-Lidar (DIAL) in the DLR Falcon aircraft High resolution water vapour measurements of the boundary layer Co-located wind lidar measurements and vertical humidity fluxes

Institut für Physik der Atmosphäre Oklahoma, May,2002 Focus of the International H 2 O Project IHOP_2002

Institut für Physik der Atmosphäre IHOP Objectives and DIAL Performance

Institut für Physik der Atmosphäre H 2 O DIAL: Operators seat with quick-look display H 2 O DIAL: Telescope, detectors and passive cooling unit On board the DLR Falcon

Institut für Physik der Atmosphäre DIAL System Parameters and Set-up

Institut für Physik der Atmosphäre T,P,q u,v,w,TAS Dropsondes: u,v, P,T,q HRDL: Horizontal & vertical wind speed DIAL: H 2 O, Aerosols W'u,v Falcon payload during IHOP_2002

Institut für Physik der Atmosphäre H 2 O DIAL Comparisons with Dropsondes

Institut für Physik der Atmosphäre 20 Legs Backscatter Ratio on N 115 km from W km asl UT Lidar Movie: Evolution of the Boundary Layer

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre High Resolution Backscatter and Water Vapour Cross Section H 2 O data: 73 m hor. res., 100 m vert. res. in near range, 300 m in far range; overall stat. error 7%

Institut für Physik der Atmosphäre Water Vapour Energy Spectra and Variance Profile km asl. water vapor variance profile (g/kg) uncorr. stat. err. variance (dashed)

Institut für Physik der Atmosphäre Method for Estimating the Statistical (Random) Error σ 2 noise σ 2 H2O Assumption: hor. homogeneityDIAL resolution scaling law

Institut für Physik der Atmosphäre Discussion of Systematic Uncertainties Reference profile (SP=95%) with dropsonde and worst case systematic deviations

Institut für Physik der Atmosphäre Summary of DIAL Uncertainties for IHOP 2002

Institut für Physik der Atmosphäre High Resolution Water Vapor and Vertical Wind DLR-DIAL: x = 150 m y = 150 m NOAA-HRDL: x = 150 m y = 150 m

Institut für Physik der Atmosphäre Co-located Airborne Water Vapour and Wind Lidars

Institut für Physik der Atmosphäre Estimation of Latent Heat Flux Profile by Eddy Correlation Flux F = wq q = q - q statistical error (solid): σ 2 F, instr. = Δt/T σ 2 w atm. σ 2 q, instr. Ritter et al., JGR, 1990 sampling error (dashed): σ 2 F, sampling = 2 IS F /T (F 2 + σ 2 w atm. σ 2 q, atm. ) Lenschow and Stankov, JAS, 1986