Preparing antihydrogen at rest for the free fall in

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.
Advertisements

Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
PROPERTIES OF TRAPPED Ca+ IONS
electrostatic ion beam trap
Helmholtzzentrum für Schwerionenforschung Fluorescence detection in a Penning trap Radu Cazan.
Compton Effect 1923 Compton performed an experiment which supported this idea directed a beam of x-rays of wavelength  onto a carbon target x-rays are.
EE 403 (or 503) Introduction to plasma Processing Fall 2011 Title of the project Your name.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.

Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Guillermina Ramirez San Juan
SPEC(troscopy) -Trap Outline of talk Introduction – motivation for two cross continent traps Imperial College Group – areas of interest and expertise SPECTRAP/SPECTRAP’
Towards sympathetic cooling of trapped ions with laser- cooled Mg+ ions for mass spectrometry and laser spectroscopy Radu Cazan.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Light Pulse Atom Interferometry for Precision Measurement
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
L. Liszkay IRFU CEA Saclay, France GBAR collaboration
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Considerations on Rydberg transport for antihydrogen formation Daniel Comparat Laboratoire Aimé Cotton Orsay FRANCE.
A mass-purification method for REX beams
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Coulomb crystallization of highly charged ions Lisa Schmöger (Max-Planck-Institut für Kernphysik / Physikalisch-Technische Bundesanstalt) COOL’15 Workshop.
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Chao Zhuang, Samansa Maneshi, XiaoXian Liu, Ardavan Darabi, Chris Paul, Luciano Cruz, and Aephraim Steinberg Department of Physics, Center for Quantum.
Testing antimatter gravity: the Aegis experiment at Cern Phd Student: Michele Sacerdoti Phd Workshop: 12-13/10/2015 Supervisors: Fabrizio Castelli, Marco.
A10 Designing spin-spin interactions in cold ion crystals
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Quantum optics Eyal Freiberg.
Beam dynamics simulation with 3D Field map for FCC RF gun
Measurement Science Science et étalons
Resonant dipole-dipole energy transfer
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
PANDA Collaboration Meeting
Ion Trap Quantum Computing and Teleportation
University of California, Berkeley
Cold Atom project 12/02/2019.
Presentation transcript:

Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler Jochen Walz Sebastian Wolf 2014 – 2017 Bescool project WAG 13-15 November 2013 Bern

Outline H+ motion control requirements Capture and cooling challenges Experimental progress

GBAR overview

by laser cooled Be+ ions Last GBAR steps H H+ Capture and cooling by laser cooled Be+ ions Threshold Photodetachment l=1.7 µm Reaction chamber H at rest Recoil 0.23 m/s g H+ 1 .. 6 keV Temperature 60 .. 300 eV e+ 30 cm Accurate measurment of g < 1 % H initial velocity Dv0 < 0.8 m/s H+ 3 neV, 20 µK

H with v0 < 1 m/s ? Cooling challenges Ground state quantum harmonic oscillator m = 1.67 10-27 kg , Dv0 < 0.8 m/s w < 3 MHz Cooling challenges Reaction chamber Cold trapped H+ Capture + Cooling Kinetic energy 1 .. 6 keV Temperature 60 .. 300 eV 700 000 K Trapped particule Temperature 3 neV 20 µK ÷ 1010..11 Frontiers of Quantum world NIST D. Wineland Innsbruck R. Blatt Classical world

> 10 000 laser cooled Be+ ions Two Cooling Steps First step Capture and sympathetic Doppler cooling by laser cooled Be+ ions in the linear capture trap (Paul trap, r0 = 3.5 mm, W = 13 MHz) H+ few mm 313 nm laser 300 eV, T = 240 000 K T ÷ 3 109 > 10 000 laser cooled Be+ ions 100 neV, T ~ mK Second step Transfer and ground state cooling of a Be+/H+ ion pair in the precision trap F. Schmidt Kaler, S. Wolf , Mainz

Capture efficiency First step t time Versus intake delay Be+ laser cooled ions 1 keV H+ ions time Ubiais=980 V H+ intake 0 V t Biased linear RF Paul trap Output end-caps Input end-caps 1000… 0 V Versus intake delay Versus initial temperature (eV) t eV

Sympathetic cooling time First step Numerical simulation 500 Be+ and 20 H+ v t = 0 s Ec= 2 meV 313 nm laser t = 8 ms Hotter H+ ions and larger ion clouds numerical challenge Work plan : Experimental tests with matter ions H2+ or H+

Precision trap – motional couplings Second step Precision trap – motional couplings Two coupled oscillators in an external potential x,y z z trapping DC potentials x,y trapping RF effective potentials Coulomb interaction coupling H+ Be+ Newton equations equilibrium positions small oscillations in phase mode out of phase mode normal modes individual ion modes x, y, z T. Hasegawa, Phys. Rev. A 83, 053407 (2011) J. B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, 043412 (2012) 1D 3D

Precision trap – motional couplings Second step mlc/msc b12 z motion x,y motion Efficient sympathetic cooling mLC/mSC  1 b1 = 50 % b2 = 50 % mLC/mSC = 9/1 b1 = 99.996 % b2 = 0.872 % ?

Doppler cooling in precision trap >> 20 µK

Raman side band cooling w0-D+dhfs- wi w0-D Stimulated Raman transition Spontaneous Raman transitions H+ Be+ w0 D ~ tens of GHz 2P3/2 F=0, 1, 2, 3 3 laser freq. 2 beams 2P1/2 F=1, 2 313.13 nm 2S1/2 n=2 dhfs= 1.25 GHz n=3 n=2 wvibr

Raman side band cooling Second step Stimulated Raman transition no spontaneous emission coherent process Rabi oscillation D Population transfert probability Lamb Dicke parameter For n → n-1, p pulse duration n=2 Single ion b1 = 1 3 modes t ~ 100 µs /n/mode Be+/H+ b1z = 0.18 2 modes x 5 b1x,y = 0.0872 4 modes x 15 ~ 10 ms < 1s n=3 n=2

Experimental progress

Capture trap design Jean-Philippe Karr Hot H+ RF 250 V at 13.3 MHz, r0 = 3.5 mm DC’s 2 .. 10 V 313 nm cooling laser Quadrupole guide 12 mm RF DC O V DC

Transfer to precision trap Design: Sebastian Wolf, Mainz Capture trap Photodetachment l = 1.64 µm ~2 mm Cooling l = 313 nm Mainz implantation trap

Vacuum vessel with cryopumping H+ Capture trap Precision trap

Work plan 2013 2014 2015 2016 Evaluate sympathetic cooling times 11/2013 12/2013 2013 Achieve the design Setup the cooling lasers 03/2014 12/2014 2014 Capture trap implementation Test with H2+ and H+ matter ions from the REMPI source Precision trap implementation Test with Be+ and Ca+ ions 06/2015 12/2015 2015 Evaluate sympathetic cooling times numerically & experimentally Transfer of precision trap to Paris, 03/2016 12/2016 2016 Be+ and H2+ transfered in precision trap Be+/H2+ ground state cooling

Tests with a H2+ / H+ REMPI source 303 nm pulsed laser 3-4 mJ H2 H2+ ions Ec = 50 eV dE ~ 10 meV 100 % efficiency H2+ ions Ec = 0 eV dE ~ 200 meV P=10-6 mb Ion creation P=10-8 mb Ion optics P=10-10 mb Injection into the quadrupole guide H+ Gbar H2+ metrology project HCI highly charged ions 40Ar13+, P. Indelicato, C. Szabo Synergies

PhD positions available Conclusion Capture of > 10 eV H+ and Doppler cooling in a linear Paul trap Transfer to precision trap Doppler and ground state cooling in precision trap OK OK PhD positions available ANR BESCOOL ITN ComiQ

Double well structure with Can we improve the motional couplings ? Idea wcoul Efficient coupling w1 w2 Trapped ions w1 ~ w2 ~ 1.0 MHz wCoul ~ 100 kHz Coulomb coupling z12eq < 40 µm z12eq Single well with m1 = 9, m2 =1 wz 2 ~ 3 wz 1 poor couplings wx 2 ~ 9 wx 1 Double well structure with very small electrodes ? Possible solution