Segreti, Lorin, Durante 11 July 2017

Slides:



Advertisements
Similar presentations
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
Advertisements

Mechanical Design & Analysis Igor Novitski. Outlines Electromagnetic Forces in the Magnet Goals of Finite Element Analysis Mechanical Concept Description.
Preliminary Design of Nb 3 Sn Quadrupoles for FCC-hh M. Karppinen CERN TE-MSC.
Superconducting Large Bore Sextupole for ILC
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
Fred Nobrega. 9 Dec 2014 Model Design & Fabrication – FNAL Fred Nobrega 2 Outline Background Mechanical Design Model Magnet Features Coil Technology and.
Development of the EuCARD Nb 3 Sn Dipole Magnet FRESCA2 P. Ferracin, M. Devaux, M. Durante, P. Fazilleau, P. Fessia, P. Manil, A. Milanese, J. E. Munoz.
SC magnet developments at CEA/Saclay Maria Durante Hélène Felice CEA Saclay DSM/DAPNIA/SACM/LEAS.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
Fred Nobrega, Nikolai Andreev 21 September, 2015.
ASC 2014Nb 3 Sn Block Coil Dipoles for a 100 TeV Hadron Collider – G. Sabbi 1 Performance characteristics of Nb 3 Sn block-coil dipoles for a 100 TeV hadron.
MQXF Design and Conductor Requirements P. Ferracin MQXF Conductor Review November 5-6, 2014 CERN.
G.A.Kirby 4th Nov.08 High Field Magnet Fresca 2 Introduction Existing strand designs, PIT and OST’s RRP are being used in the conceptual designs for two.
Superconducting Magnet Group Superconducting magnet development for ex-situ NMR LDRD 2003 Paolo Ferracin, Scott Bartlett 03/31/2003.
Subscale quadrupole (SQ) series Paolo Ferracin LARP DoE Review FNAL June 12-14, 2006.
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
Magnet design, final parameters Paolo Ferracin and Attilio Milanese EuCARD ESAC review for the FRESCA2 dipole CERN March, 2012.
New options for the new D1 magnet Qingjin Xu
Muon Cooling Channel Superconducting Magnet Systems Muon Collider Task Force Meeting on July 31, 2006 V.S. Kashikhin.
Update on Q4 DSM/IRFU/SACM The HiLumi LHC Design Study (a sub-system of HL-LHC) is partly funded by the European Commission within the Framework Programme.
LMQXFA Cold Mass Assembly Antonios Vouris Fermilab February 3, 2016.
ECC Clément Lorin – Maria Durante Acknowledgements: Fresca2 team.
11 T Dipole Project CERN Status M. Karppinen 11 T Management meeting 1 July 2013.
4th Joint HiLumi LHC-LARP Annual Meeting D2 Design, Status, Plan P.Fabbricatore & S.Farinon INFN Genova Presented by E.Todesco (CERN)  INFN Genova is.
Cosine-theta configurations for S.C. Dipole Massimo Sorbi on behalf of: INFN LASA & Genova Team Giovanni Bellomo, Pasquale Fabbricarore, Stefania Farinon,
DESIGN STUDIES IR Magnet Design P. Wanderer LARP Collaboration Meeting April 27, 2006.
CERN MBHSM0101 and Plan for Future Models F. Savary on behalf of the 11T Dipole Project Team.
HL-LHC Meeting, November 2013D2 Status and Plans – G. Sabbi 1 D2 Conceptual Design Status and Next Steps G. Sabbi, X. Wang High Luminosity LHC Annual Meeting.
CONCEPTUAL DESIGN OF D2 MECHANICAL STRUCTURE S. Farinon, P. Fabbricatore (INFN-Sezione di Genova) Sept. 17 th 2014.
Preliminary analysis of a 16 T sc dipole with cos-theta lay-out INFN team October 2015.
Design ideas for a cos(2q) magnet
Mechanical behavior of the EuroCirCol 16 T Block-type dipole magnet during a quench Junjie Zhao, Tiina Salmi, Antti stenvall, Clement Lorin 1.
Update on PANDA solenoid design
Massimo Sorbi on behalf of INFN team:
MQXC Nb-Ti 120mm 120T/m 2m models
Hervé Allain, R. van Weelderen (CERN)
Hervé Allain, R. van Weelderen (CERN)
WORK IN PROGRESS F C C Main Quadrupoles FCC week 2017
TQS Overview and recent progress
TQS Structure Design and Modeling
Hervé Allain, R. van Weelderen (CERN)
D2 Status The contract for the construction of the short model
16 T Cosq DIPOLE Mechanical Analysis
At ICFA Mini-Workshop on High Field Magnets for pp Colliders,
16 T Nb3Sn block dipole EuroCirCol
Cosq configuration - Mechanics
JLAB MEETING FDR – April 23-24th 2013
EuroCirCol: 16T dipole based on common coils (DRAFT)
Hervé Allain, R. van Weelderen (CERN)
Mechanical Modelling of the PSI CD1 Dipole
FRESCA2 Update on the dipole design and new calculations
EuroCirCol: 16T dipole based on common coils
16 T dipole in common coil configuration: mechanical design
Bore quench field vs. critical current density
Mechanical results on the double aperture Version V20ar
FCC-hh 16 T, 1.9 K INFN Team October 2015.
the MDP High Field Dipole Demonstrator
Block design status EuroCirCol
Large aperture Q4 M. Segreti, J.M. Rifflet
Vincent Roger, Siarhei Yurevich, Cecilia G. Maiano, Mario Sapinski
11T Dipole for the LHC Collimation upgrade
MQXF coil cross-section status
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
P.Fabbricatore & S.Farinon
Large aperture Q4 M. Segreti, J.M. Rifflet
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Q4 development M. Segreti, J.M. Rifflet, E. Todesco
Cross-section of the 150 mm aperture case
Presentation transcript:

Segreti, Lorin, Durante 11 July 2017 ECC block design Segreti, Lorin, Durante 11 July 2017

Emag design – New assumptions Interbeam distance: 194 mm (as LHC) High field strand diameter: 1.1 mm (for procurement reason) Heat treatment dimensional change: +1% width ; +3% thickness Yoke outer diameter: 570 mm (more room for the Al shell) Bore thickness: 1.9 mm, including 0.5 mm thick (?) ground insulation Space for He cooling 2xDN105 + 4xDN30 -> All of theses items lead to an increase of the qty of conductor

v2ari194 Quantity v20ar v1ari204 v2ari194 Unit strand diameter 1.155 – 0.705 1.15 – 0.70 1.1 – 0.7 mm nb of strands 21 – 35 20 – 34 21 – 34 N/A BE - Cable width 13.05 12.6 12.47 BE - Cable thickness 2.1 – 1.25 1.94 – 1.23 AF - Cable width x AF - Cable thickness 2.0 – 1.27 Cu/nonCu 0.8– 2.3 0.8– 2.0 0.8 – 2.0 (1.7) Inom 10990 10480 10000 A Bpeak 16.74 16.72 16.76 T LL margin (1.9 K) 14.01 13.93 13.86 % Inductance diff. (2 ap) 39.80 44.2 50.2 mH/m Stored energy (2 ap) 2518 2542 2647 kJ/m Nb of turns 104 = 5+5+10+10 +18+18+19+19 108 = 5+5+9+9 +19+19+21+21 116 = 5+5+10+10+21+21+22+22 - Fx & Fy (per ½-coil) 8042 & -3347 8042 & -3329 8269 & -3535 kN/m Hotspot 349 351 329 (346) K Bore thickness 1.75 1.6 1.9 Midplane shim 2.25 2.35 LdxI (1 aperture) 218 232 251 HA/m I/Ic HF-LF 0.47 – 0.61 Out yoke diameter 800 750 570 Conductor area (2 ap) 133.7 130.3 137.9 cm² 4578 x 14.3 x 8.7 weight 7614 7420 7860 tons v2ari194

2D design

Harmonic content

Mechanical model ACTUAL MODEL V2ari194 (interbeam distance = 194 mm) with outer yoke Ø = 570 mm 105 mm thick shell 1.14 mm ← 50 µm ↓ Contacts/symmetry: sliding; no friction glued: coils with pole via a Kapton insulation and all coils together ¼ of the structure due to symmetries

Coil stress distribution Key Cold – 4.2 K 16 T σX -137 MPa -204 MPa -196 MPa von Mises +147 MPa +181 MPa +190 MPa

σx at coil / pole interface

Synthesis with Ø yoke = 750 mm interbeam distance = 204 mm 90 mm thick shell 850 µm ← with Ø yoke = 600 mm interbeam distance = 204 mm 100 mm thick shell 1 mm ← with Ø yoke = 570 mm interbeam distance = 194 mm 105 mm thick shell 1.14 mm ← σX max σ Von Mises max Keys -134 125 Cool-down -203 187 Energization 16 T -201 207 σX max σ Von Mises max Keys -132 120 Cool-down -209 186 Energization 16 T -202 203 σX max σ Von Mises max Keys -137 147 Cool-down -204 181 Energization 16 T -196 190