Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal 18. 03. 2004 1 Fuel Cell Research Symposium ETH Zürich.

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Agenda Semiconductor materials and their properties PN-junction diodes
© Jim Barritt 2005School of Biological Sciences, Victoria University, Wellington MSc Student Supervisors : Dr Stephen Hartley, Dr Marcus Frean Victoria.
Advanced Piloting Cruise Plot.
Chapter 7 Ionic and Metallic Bonding 7.2 Ionic Bonds and
Warsaw University of Technology
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
30 nm © 2005 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Atomic Switch ITRS Emerging.
UNITED NATIONS Shipment Details Report – January 2006.
HKCEE Chemistry Volumetric Analysis &
Development of analytical bond- order potentials for the Be-C-W-H system C. Björkas, N. Juslin, K. Vörtler, H. Timkó, K. Nordlund Department of Physics,
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Periodic Trends 6.3.
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
ZMQS ZMQS
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft M. Steinbrück, FZK/IMF-I 11th Int. QUENCH Workshop, Karlsruhe, October 25-27, Oxidation.
Solve Multi-step Equations
Richmond House, Liverpool (1) 26 th January 2004.
ABC Technology Project
Imperial College London 1 3. Beam extraction 3. Extraction of particle beams 3.1 The space charge limit and Child-Langmuirs law 3.2 External and internal.
Plane wave reflection and transmission
Jeopardy Gas Laws.
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
VOORBLAD.
15. Oktober Oktober Oktober 2012.
Electrochemistry Generating Voltage (Potential)
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
BIOLOGY AUGUST 2013 OPENING ASSIGNMENTS. AUGUST 7, 2013  Question goes here!
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
© 2012 National Heart Foundation of Australia. Slide 2.
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
Introduction to Feedback Systems / Önder YÜKSEL Bode plots 1 Frequency response:
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Addition 1’s to 20.
25 seconds left…...
Equal or Not. Equal or Not
Slippery Slope
Januar MDMDFSSMDMDFSSS
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Chapter 12 Solutions Copyright © 2008 by Pearson Education, Inc.
Intracellular Compartments and Transport
PSSA Preparation.
VPN AND REMOTE ACCESS Mohammad S. Hasan 1 VPN and Remote Access.
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Technology
Dissociation and pH Dissociation of weak acids/bases controlled by pH Knowing the total amount of S and pH, we can calculate activities of all species.
Improving the electrolyte/ cathode assembly for advanced Solid Oxide Fuel Cells N. Hildenbrand, B.A. Boukamp, D.H.A. Blank (a) P. Nammensma, G. Rietveld.
Ionic ceramic conductors. Solid Oxide Fuell Cells (SOFCs)
Modeling in Electrochemical Engineering
1 The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/D for oxygen ions in Zr 0.8.
Computational Solid State Chemistry 2 SSI-18 Workshop 2011 Rob Jackson
Investigation of BSCF Cathode on GDC Electrolyte for Intermediate Temperature SOFCs Vann Brasher Mentors: Dr. Daniel Mumm Anh Duong Sungrok Bang.
Impedance spectroscopy of composite polymeric electrolytes - from experiment to computer modeling. Maciej Siekierski Warsaw University of Technology, Faculty.
Computer modelling of the concentration dependence of doping in solid state ionic materials Robert A Jackson School of Physical and Geographical Sciences,
Simulating Stimulating Interfaces Applications in Adsorption and Catalysis C. Heath Turner and Xian Wang Department of Chemical and Biological Engineering.
A study of Fe – substituted (La 0.8 Sr 0.2 ) 0.95 MnO 3-y as cathode material for solid oxide fuel cells B. N. Wani, Mrinal Pai, S.J. Patwe, S. Varma,
Photoluminescence of stabilized ZrO2 with different dopant
Presentation transcript:

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Experimental Investigation and Simulation of Oxygen Transport in SOFC Materials Thermochemistry and microkinetics 1.Motivation and systems: ZrO 2, LaGaO 3, LaMnO 3 2.Experimental: Tracer diffusion in electrolyte 3.Experimental: Tracer diffusion in LSM/YSZ pair 4.Modelling: Static lattice => migration mechanism 5.Modelling: Molecular dynamics => diffusion Martin Kilo, Christos Argirusis, Günter Borchardt, Rob A. Jackson * TU Clausthal, Institut für Metallurgie, Robert-Koch-Str. 42 D Clausthal-Zellerfeld, Germany * Keele University, School of Physics and Chemistry, Keele, Staffs ST5 5GB / UK

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Motivation: Oxygen mixed and ionic conductors Most common examples: doped ZrO 2 or doped perovskites, e.g. (La 0.8 Sr 0.2 )(Ga 0.8 Mg 0.2 )O 3-δ, LSGM, La x Sr 1-x MnO 3-δ, LSM Doping with aliovalent cations leads to fast oxygen diffusion, but usually to slow cation diffusion T = A(x) exp(-E a (x) / RT) n = 2: Ca Zr 2 ' n = 1: Y Zr 1 ' n x A: 0 < x < x'B: x > x' n = 1 n = 2 x A EaEa σT x A EaEa x A EaEa x' 0.08 – 0.12

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Open questions Experimental What is the practical connection between the experimental oxygen diffusion coefficient and conductivity? Oxygen diffusion under applied electrical field Influence of thermal ageing on oxygen diffusion Simulation of oxygen diffusion Static lattice: Mechanism of transport Molecular dynamics: Transport coefficients Finite element modelling: Simulation of real systems

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Gaseous tracer: 16 O / 18 O gas tracer Nat.: 0.2 % 18 O Tracer: >90% 18 O Surface limited: x( 18 O,x=0) < 90 % 18 O 16 O Furnace: T, p, static Sample c(x,t)-c 0 =(c s -c 0 )·(erf(x/2(D O t) 0.5 )-exp(h·x+h 2 ·D O t)·erf(x/2(D O t) 0.5 +h·(D O t) 0.5 ))

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Isotopic lateral and depth distribution: SIMS Analysis VG SIMS-lab: Quadrupole detection; 7 kV Ar + Detection of positively/negatively charged ions Charge compensation with flood gun Cameca 3f/5f: Magnetic sector field; >10 kV O +/- Detection of positively charged ions Charge compensation by conducting layer

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ ZrO 2 -systems CSZ, ScSZ, YSZ: working conditions CaO-ZrO 2 (Duran, J.Mat.Sci ) Sc 2 O 3 -ZrO 2 (Ruh, J.Am.Ceram.Soc ) Y 2 O 3 -ZrO 2 (Suzuki, SSI ) All ZrO 2 -systems have a cubic part of the phase diagram with fast oxygen transport and slow cation transport Cation diffusion (red line: T = 1000 °C) Oxygen diffusion Working regions: Mostly single crystals

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Oxygen transport: Self diffusion Oxygen Diffusion - Maximum in D(x) like σT, MD - ΔH not strongly dependent on Y 2 O 3 content - Haven ratio no simple T-function - Fuel cell: Field, ageing H R := D O /D σT = f O /f σT

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Methods: ml: mechanical loss DC: dielectrical conductivity D O *: self diffusion dl: dielectric loss Oxygen diffusion: Activation enthalpies and ageing Ageing: Preannealing decreases Oxygen diffusion coefficient for x(Y 2 O 3 ) 8mol% Tdiff=973K, Tpre: 1150 °C 1400 °C 1700 °C

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Static oxygen diffusion: Summary Different experimental methods reveal different information Self diffusion Activation enthalpy of oxygen diffusion lowest Oxygen diffusion is dependant on thermal history Oxygen diffusion under working condition of SOFC ? Conductivity Conductivity nonlinear => association. What are the contributions of association and migration? Mechanical loss What is the difference between local and diffusive jumps?

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Oxygen incorporation into SOFC electrolyte 20 µm ZrO 2 LSM 3PB 2PB Surface diffusion O ad,LSM O2O2 O 2- e - 300nm Three possible mechanisms: - 3 phase boundary (3PB) - electrode surface - through electrode + 2PB

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Model system for SOFC electrode/electrolyte 100 μm LSM surface, dense, unstructured 200 μm LSM stripe(s) YSZ substrate LSM stripes 20 µm wide LSM layer ~ 300 nm thick PLD of LSM on YSZ at 800 °C

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Experimental setup Pt ink reference electrode Pt contact Pt ink counter electrode LSM structured cathode YSZ

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Oxygen exchange in cathode / YSZ FEM calculation of oxygen distribution after diffusion from a line source LSM YSZ Assumptions: Line source at the 2PB D YSZ >> D LSM k 1 at 2PB (LSM/YSZ) = k 2 at 2PB ( 18 O/LSM) = k 3 at 2PB ( 18 O/YSZ) = 0 FEMlab

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Experimental results: LSM/YSZ O Zr La 3PB activity 0 mV / 10 min -300 mV / 10 min -100 mV / 10 min

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Depth profile analysis 100 μm LSM surface, dense, unstructured on the LSM stripe on the YSZ (LSM free area) Crater 200x200 µm Oxygen content under dense LSM, LSM stripe, free YSZ

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ O content: Variation of overpotential surface concentration bulk

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Oxygen diffusion under field: Summary The bulk path seems to be very sensitive regarding the applied cathodic overpotential. Even at low cathodic overpotentials, the bulk path is blocking. The 3PB is more active at low cathodic overpotentials. The higher the cathodic overpotential, the more inactive becomes the 3PB. The solid/solid interface-resistance is clearly visible with SIMS and depends on the applied overpotential.

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ ZrO 2 : Modelling oxygen migration Migration energies, hopping energies, migration pathways… Association energies

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Migration pathway from static lattice calculations - Single jump between two vacancies in undoped ZrO 2 : ΔE(O 2- ) < 0.2 eV - Equilibrium position of O 2- ion: (0.333,0.25,0.25) Code: GULP (J. Gale, London)

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Association energy from supercell calculations E assoc. (x) = {E latt (x)-E latt (x=0)-x(E(V O 2 )+2*E(Y Zr ')}/x Supercells of 4×4×4 unit cells, varying Y/Zr content Association energy: difference between supercell lattice energy and perfect lattice energies

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Summary static lattice calculations Results Low migration energy, high association energy Oxygen vacancies affects local oxygen surroundings Limitation of static lattice calculations Calculation of one single jump Assumption of a perfect or at least well-defined surrounding Temperature effects difficult to describe Molecular dynamics Information as function of temperature and time More realistic description of highly disordered systems Trajectory allows conclusions on jump mechanisms But: Slow diffusion difficult

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Oxygen diffusion: Molecular dynamics on YSZ Jumps between one or two Y ions are less likely than between two Zr ions Restricted diffusion path for high dopant level Cubic unit cell

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ MD: Oxygen diffusion coefficient in YSZ Maximum in D similar to experimental point, but higher values of D Like experimental observed, ΔH independent of x(Y 2 O 3 ). At high x(Y 2 O 3 ), D independent of x(Y 2 O 3 ) MD exp

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ MD: Oxygen diffusion coefficient in LSGM-8282 Activation enthalpy close to the experimental values Diffusion goes along (110) direction

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ MD: Oxygen diffusion coefficient in ULSM Two activation enthalpies due to local hopping Sketch of migration pathway along (100); T = 1200K, 1250 ps green : oxygen pink, grey: La, Sr red: Mn

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Summary of computer simulation results Static lattice calculations Migration energies too low Supercell method good estimation of association energies What are the limitations ? Molecular Dynamics calculations Diffusion coefficients similar to the experiment Activation enthalpies of O almost identical Percolation network ?

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Conclusions I: Experimental results Static oxygen diffusion experiments Activation enthalpy of oxygen diffusion lowest Oxygen diffusion is dependant on thermal history Oxygen diffusion under SOFC conditions Even at low cathodic overpotentials, the bulk path is blocking The 3PB is less active at high cathodic overpotential How are the diffusivities affected ?

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Conclusions II: Modelling results Static lattice calculations O/ZrO 2 Estimate of association energies using supercells Molecular dynamics on YSZ Diffusion coefficients and activation energies are close to the experimental values Existence of percolation pathways? Molecular dynamics on LSGM, ULSM Oxygen migration only along (110) Localised jumps according to the cation surrounding of A- and B-sublattices

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Future perspectives Dynamic oxygen diffusion YSZ/ULSM : Variation of time, polarisation, p(O 2 ) Variation of the cathode material Oxygen exchange coefficient at the solid/solid interface? Anode/Electrolyte : Hydrogen Computer simulations Atomistic modelling of oxygen transport across interfaces solid/solid and gas/solid Modelling of oxygen transport under electrical field Other materials: LSCF, Apatites Advanced methods: QM, finite elements …

Thermochemie und Mikrokinetik und Mikrokinetik Martin Kilo, Institut für Metallurgie, TU Clausthal Fuel Cell Research Symposium ETH Zürich Switzerland 18/ Acknowledgements M. Weller, MPI Stuttgart: Experimental results Prof. P. Schmidt, TU Darmstadt: Use of computer centre Deutsche Forschungsgemeinschaft (DFG): Financial support