Date of download: 10/22/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: Statistical Investigation of Air Dehumidification Performance by Aqueous Lithium.
Advertisements

Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Comparison of the Straight Adiabatic Capillary Tube Expansion Devices Used in Refrigeration.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Transfer and Pressure Drop Analysis of Chilled Water and Ice Slurry in a.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Exchanger Design of Direct Evaporative Cooler Based on Outdoor and Indoor.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Performance and Design Comparison of a Bulk Thermoelectric Cooler With a Hybrid.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. Thermal Performance of an Al 2 O 3 –Water Nanofluid Pulsating Heat Pipe J. Electron.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: On the Design of an Aero-Engine Nose Cone Anti-Icing System Using a Rotating Heat.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: Interoperability Between PLM and RoHS Compliance Management Based on XML and Smart.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Heat Conduction Effect on Oscillating Heat Pipe Operation J. Thermal Sci. Eng.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Predicting the Thermal Conductivity of Foam Neoprene at Elevated Ambient Pressure.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Energy Efficiency of Refrigeration Systems for High-Heat-Flux Microelectronics.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Integrated Framework for Enhancing Software Development Methodologies With Comparative.
Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Simulation and Optimization of Drying of Wood Chips With Superheated Steam in.
Date of download: 11/12/2016 Copyright © ASME. All rights reserved. From: Experimental and Numerical Analysis of Low Output Power Laser Bending of Thin.
Date of download: 9/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
From: Pressure Surge During Cryogenic Feedline Chilldown Process
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Modeling Transmission Effects on Multilayer Insulation
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/10/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
From: Cloud Manufacturing: Current Trends and Future Implementations
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
From: Performance of a Zero-Energy House
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
From: Modeling a Phase Change Thermal Storage Device
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
From: Superior Performance of Nanofluids in an Automotive Radiator
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
From: Thermal Model of the EuroDish Solar Stirling Engine
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
From: A Smart Cloud-Based System for the WEEE Recovery/Recycling
Date of download: 1/20/2018 Copyright © ASME. All rights reserved.
Date of download: 1/22/2018 Copyright © ASME. All rights reserved.
From: Magnetic Field Effects on Laser Drilling
Presentation transcript:

Date of download: 10/22/2017 Copyright © ASME. All rights reserved. From: An Analysis of the Quenching Performance of a Copper Nanofluid Prepared Using Laser Ablation J. Thermal Sci. Eng. Appl. 2016;8(4):044501-044501-5. doi:10.1115/1.4033619 Figure Legend: Photograph of the IVF Smart Quench system used to perform all the quench tests: (a) 12.5 mm diameter Inconel 600probe containing a k-type thermocouple at its center, (b) furnace, (c) quench tank, and (d) agitator

Date of download: 10/22/2017 Copyright © ASME. All rights reserved. From: An Analysis of the Quenching Performance of a Copper Nanofluid Prepared Using Laser Ablation J. Thermal Sci. Eng. Appl. 2016;8(4):044501-044501-5. doi:10.1115/1.4033619 Figure Legend: Temperature versus time and cooling rate versus temperature plots for quenching tests performed using still de-ionized water

Date of download: 10/22/2017 Copyright © ASME. All rights reserved. From: An Analysis of the Quenching Performance of a Copper Nanofluid Prepared Using Laser Ablation J. Thermal Sci. Eng. Appl. 2016;8(4):044501-044501-5. doi:10.1115/1.4033619 Figure Legend: Temperature versus time and cooling rate versus temperature plots comparing the cooling performance of still de-ionized water and still nanofluid

Date of download: 10/22/2017 Copyright © ASME. All rights reserved. From: An Analysis of the Quenching Performance of a Copper Nanofluid Prepared Using Laser Ablation J. Thermal Sci. Eng. Appl. 2016;8(4):044501-044501-5. doi:10.1115/1.4033619 Figure Legend: A comparison of cooling data recorded for nanofluid at low, moderate, and high levels of agitation

Date of download: 10/22/2017 Copyright © ASME. All rights reserved. From: An Analysis of the Quenching Performance of a Copper Nanofluid Prepared Using Laser Ablation J. Thermal Sci. Eng. Appl. 2016;8(4):044501-044501-5. doi:10.1115/1.4033619 Figure Legend: A comparison between cooling data recorded for highly agitated de-ionized water and still nanofluid