ILC - Upgrades Nick Walker – 100th meeting

Slides:



Advertisements
Similar presentations
CLIC Energy Stages D. Schulte1 D. Schulte for the CLIC team.
Advertisements

Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
TLCC Themes BAW-2, SLAC, 19 January 2011 Ross Walker Yamamoto 1.
Nick Walker (DESY/GDE) GDE Internal Cost Review FNAL ILC Design Overview N. Walker ILC PAC TDR review1.
CARE07, 29 Oct Alexej Grudiev, New CLIC parameters. The new CLIC parameters Alexej Grudiev.
Baseline Configuration - Highlights Barry Barish ILCSC 9-Feb-06.
3-March-06ILCSC Technical Highights1 ILC Technical Highlights Superconducting RF Main Linac.
Conventional Source for ILC (300Hz Linac scheme and the cost) Junji Urakawa, KEK LCWS2012 Contents : 0. Short review of 300Hz conventional positron source.
1 Q3 Main linac starting gradient, upgrade gradient, and upgrade path Results of WG5 discussions.
Proposed machine parameters Andrei Seryi July 23, 2010.
Christopher Nantista ARD R&D Status Meeting SLAC February 3, …… …… …… … ….
The International Linear Collider and the Future of Accelerator-based Particle Physics Barry Barish Caltech Lomonosov Conference 20-Aug-2015 ILC.
Status of ILC Project Nick Walker – DESY ILD Meeting – Cracow –
N. Walker (for PMs) ALCPG, Univ. of Oregon, Eugene TeV Upgrade.
1 Tunnel implementations (laser straight) Central Injector complex.
Current CLIC Energy Stages D. Schulte1. Main Beam Generation Complex Drive Beam Generation Complex Layout at 3 TeV D. Schulte2.
SB2009/ Low energy running for ILC International Workshop on Linear Colliders 2010 Andrei Seryi John Adams Institute 19 October 2010.
Report of 2 nd ILC Workshop (Snowmass) Working Group Kiyoshi KUBO references: Slides of the plenary talks in the workshop by P.Tenembaum and.
SINGLE-STAGE BUNCH COMPRESSOR FOR ILC-SB2009 Nikolay Solyak Fermilab GDE Baseline Assessment Workshop (BAW-2) SLAC, Jan , 2011 N.Solyak, Single-stage.
GDE questions, including one or two IRs Grahame Blair, Tomo Sanuki, Andrei Seryi for WG4 Snowmass, CO, August 25, 2005 Grahame Blair, Tomo Sanuki, Andrei.
1 Physics Input for the CLIC Re-baselining D. Schulte for the CLIC collaboration.
1 Update on Q2 Main linac starting gradient, upgrade gradient, and upgrade path Results of WG5 discussions after feedback from plenary on Tuesday New Option.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
CLIC Energy Stages Meeting D. Schulte1 D. Schulte for the CLIC team.
Nick Walker AD&I WebEx Meeting TeV Upgrade Study AD&I WebEx Meeting Nick Walker 1 Brief summary of ALCPG’11 discussions.
1 Update on Q2 Main linac starting gradient, upgrade gradient, and upgrade path Results of WG5 discussions after feedback from plenary on Tuesday New Option.
ParameterL-bandS-bandX-band Length (m) Aperture 2a (mm) Gradient (Unloaded/Loaded) (MV/m)17/1328/2250/40 Power/structure (MW) Beam.
CLIC Energy Stages D. Schulte1 D. Schulte for the CLIC team.
Inputs from GG6 to decisions 2,7,8,15,21,27,34 V.Telnov Aug.24, 2005, Snowmass.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
F. Willeke, Snowmass Luminosity Limitations of e-p Colliders Extrapolation from HERA Experience Examples for IR Layout LINAC-Ring Limitations HERA.
N. Walker, K. Yokoya LCWS ’11 Granada September TeV Upgrade Scenario: Straw man parameters.
24-July-10 ICHEP-10 Paris Global Design Effort 1 Barry Barish Paris ICHEP 24-July-10 ILC Global Design Effort.
For Layout of ILC , revised K.Kubo Based on following choices. Positron source: Prepare both conventional and undulator based. Place the.
ML (BC) Studies update Nikolay Solyak Arun Saini.
1 Positron Source AD & I Report Jim Clarke ASTeC & Cockcroft Institute Daresbury Laboratory.
Conventional source developments (300Hz Linac scheme and the cost, Part-II) Junji Urakawa, KEK PosiPol-2012 at DESY Zeuthen Contents : 0. Short review.
TLCC Themes BAW-2, SLAC, 19 January 2011 Ross Walker Yamamoto 1.
Please check out: K. Ohmi et al., IPAC2014, THPRI003 & THPRI004 A. Bogomyagkov, E. Levichev, P. Piminov, IPAC2014, THPRI008 Work in progress FCC-ee accelerator.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
1 DR 10 Hz Repetition Rate S. Guiducci (LNF) AD&I webex, 23 June 2010.
WG1: Overall Design personal highlights report by Nick Walker First project meeting 2/12/2004 conveners: Kiyoshi Kubo (KEK) Tor Raubenheimer (SLAC)
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
From Beam Dynamics K. Kubo
Estimate AC power for TeV Upgrade
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Summary of WG2 :CFS for staging
SC Quadrupole Magnets in ILC Cryomodules
Staging in the TDR.
Status of the CLIC main beam injectors
Auxiliary Positron Source
CLIC Rebaselining at 380 GeV and Staging Considerations
CLIC Klystron-based Design
Linac possibilities for a Super-B
Status and Plan of GDE Design Work (Including Road Map for RDR)
Luminosity Optimization for FCC-ee: recent results
Cost Comparison of Undulator and e-Driven Systems
Luminosity Optimization at 250GeV
Measurements, ideas, curiosities
Linear Colliders Linear Colliders 4 lectures
CLIC source update CLIC main beam injectors reminder
Electron Source Configuration
Nick Walker for the Project Management
ATF project meeting, Feb KEK, Junji Urakawa Contents :
Barry Barish Paris ICHEP 24-July-10
AC Power for a Super-B Factory
Overall Considerations, Main Challenges and Goals
ILC - Global Design Effort
ERL Director’s Review Main Linac
CEPC SRF Parameters (100 km Main Ring)
Presentation transcript:

ILC - Upgrades Nick Walker – 100th ILC@DESY meeting 18.10.2013

What’s in the “baseline” document (TDR) What’s in store… What’s in the “baseline” document (TDR) The baseline 500 GeV machine (L = 1.8x1034) Luminosity upgrade TeV upgrade Staged construction starting at 250 GeV CM Beyond the TDR Increased repetition rate operation (power)

ILC Published Parameters Centre-of-mass independent: Luminosity Upgrade Collision rate Hz 5 Number of bunches 1312 2625 Bunch population ×1010 2 Bunch separation ns 554 366 Pulse current mA 5.8 8.8 Beam pulse length ms 730 960 RMS bunch length mm 0.3 Horizontal emittance 10 Vertical emittance nm 35 Electron polarisation % 80 Positron polarisation 30 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D00000000925325

ILC Published Parameters Centre-of-mass dependent: Centre-of-mass energy GeV 200 230 250 350 500 Electron RMS energy spread % 0.21 0.19 0.16 0.12 Positron RMS energy spread 0.15 0.10 0.07 IP horizontal beta function mm 16 12 15 11 IP vertical beta function 0.48 IP RMS horizontal beam size nm 904 843 700 662 474 IP RMS veritcal beam size 9.3 8.6 8.3 7.0 5.9 Vertical disruption parameter 20.4 23.5 21.1 24.6 Enhancement factor 1.83 1.91 1.84 1.95 Geometric luminosity ×1034 cm-2s-1 0.25 0.29 0.36 0.45 0.75 Luminosity 0.50 0.59 0.93 1.8 % luminosity in top 1% DE/E 92% 90% 84% 79% 63% Average energy loss 1% 2% 4% Pairs / BX ×103 41 50 70 89 139 Total pair energy / BX TeV 24 34 51 108 344 General observations: Factor of 2 in L from enhancement – relatively large disruption parameter -> tight tolerances on collisions to IP (feedback) http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D00000000925325

ILC Published Parameters Centre-of-mass dependent: Centre-of-mass energy GeV 200 230 250 350 500 Electron RMS energy spread % 0.21 0.19 0.16 0.12 Positron RMS energy spread 0.15 0.10 0.07 IP horizontal beta function mm 16 12 15 11 IP vertical beta function 0.48 IP RMS horizontal beam size nm 904 843 700 662 474 IP RMS veritcal beam size 9.3 8.6 8.3 7.0 5.9 Vertical disruption parameter 20.4 23.5 21.1 24.6 Enhancement factor 1.83 1.91 1.84 1.95 Geometric luminosity ×1034 cm-2s-1 0.25 0.29 0.36 0.45 0.75 Luminosity Upgrade 1.00 1.18 1.50 1.86 3.6 % luminosity in top 1% DE/E 92% 90% 84% 79% 63% Average energy loss 1% 2% 4% Pairs / BX ×103 41 50 70 89 139 Total pair energy / BX TeV 24 34 51 108 344 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D00000000925325

Also seen as Risk Mitigation! Luminosity Upgrade Also seen as Risk Mitigation! Adding klystrons (and modulators) Damping Ring: Estimated cost based on TDR estimate: 490 MILCU and 1.6 MPHr

From 500 to 1000 GeV IP Main Linac central region 15.4 km (site length ~31 km) 1.1 km 10.8 km 1.3 km 2.2 km Main Linac BDS e+ src IP bunch comp. Main Linac <Gcavity> = 31.5 MV/m Geff ≈ 22.7 MV/m (fill fact. = 0.72) central region

From 500 to 1000 GeV IP Main Linac central region <26 km ? (site length <52 km ?) 1.1 km <10.8 km ? 10.8 km 1.3 km 2.2 km Main Linac BDS e+ src IP bunch comp. Main Linac <Gcavity> = 31.5 MV/m Geff ≈ 22.7 MV/m (fill fact. = 0.72) central region Snowmass 2005 baseline recommendation for TeV upgrade: Gcavity = 36 MV/m ⇒ 9.6 km (VT ≥ 40 MV/m) Based on use of low-loss or re-entrant cavity shapes

Construction Scenario(s) 500GeV operations start civil construction BC Main Linac BDS e+ src IP civil construction + installation 500GeV operations BC Main Linac BDS e+ src IP Installation/upgrade shutdown An obvious possible approach to minimizing downtime for physics. Assume something like a total of 5 year construction with perhaps 12-18 months with no physics?? BC Main Linac BDS e+ src IP final installation/connection removal/relocation of BC Removal of turnaround etc. Installation of addition magnets etc. Commissioning / operation at 1TeV BC Main Linac BDS e+ src IP

TeV Parameters (2 sets) PAC constrained ≤300 MW shorter bunch length (within BC range) horizontal focusing main difference low and high beamstrahlung

ILC Published Parameters Centre-of-mass dependent: Centre-of-mass energy GeV 200 230 250 350 500 Electron RMS energy spread % 0.21 0.19 0.16 0.12 Positron RMS energy spread 0.15 0.10 0.07 IP horizontal beta function mm 16 12 15 11 IP vertical beta function 0.48 IP RMS horizontal beam size nm 904 843 700 662 474 IP RMS veritcal beam size 9.3 8.6 8.3 7.0 5.9 Vertical disruption parameter 20.4 23.5 21.1 24.6 Enhancement factor 1.83 1.91 1.84 1.95 Geometric luminosity ×1034 cm-2s-1 0.25 0.29 0.36 0.45 0.75 Luminosity 0.50 0.59 0.93 1.8 % luminosity in top 1% DE/E 92% 90% 84% 79% 63% Average energy loss 1% 2% 4% Pairs / BX ×103 41 50 70 89 139 Total pair energy / BX TeV 24 34 51 108 344 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D00000000925325

Higgs Factory Centre-of-mass dependent: Centre-of-mass energy GeV 200 230 250 350 500 Electron RMS energy spread % 0.21 0.19 0.16 0.12 Positron RMS energy spread 0.15 0.10 0.07 IP horizontal beta function mm 16 12 15 11 IP vertical beta function 0.48 IP RMS horizontal beam size nm 904 843 700 662 474 IP RMS veritcal beam size 9.3 8.6 8.3 7.0 5.9 Vertical disruption parameter 20.4 23.5 21.1 24.6 Enhancement factor 1.83 1.91 1.84 1.95 Geometric luminosity ×1034 cm-2s-1 0.25 0.29 0.36 0.45 0.75 Luminosity 0.50 0.59 0.93 1.8 % luminosity in top 1% DE/E 92% 90% 84% 79% 63% Average energy loss 1% 2% 4% Pairs / BX ×103 41 50 70 89 139 Total pair energy / BX TeV 24 34 51 108 344 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D00000000925325

Staged construction: 250 GeV Complete civil construction for 500 GeV machine Install ~1/2 linacs for fist stage operation (and long transport line) Capital savings ~25% Adiabatic energy upgrade (lower rate cryomodule production) Favoured by Japan

Ebeam = 125 GeV

Making Positrons @ 250 GeV CM 147m helical undulator (TDR baseline) Ebeam = 125 GeV design point yield margin Wei Gai (ANL) et al

TDR: 10-Hz Mode (e+ production) For TDR, we are required to have solutions down to Z-pole (~45 GeV beam) ILC TDR assumes 10-Hz mode where e- linac is pulsed at 10 Hz first pulse @ 150 GeV to make positrons second pulse @ Ecm/2 to make luminosity Issues DR damping time halved (extra cost and MW) Beam dynamics in Main Linac (looks OK) Additional beam lines and pulsed magnet systems Additional AC power for elec linac 10-Hz mode But for 500 GeV design, additional power already available Not insignificant cost increase for a dedicated LHF collision rate still 5Hz

Positron Yield 147m helical undulator (TDR baseline) Ebeam = 125 GeV design point yield margin Wei Gai (ANL) et al

Positron Yield for a LHF Recover yield by going to ~250 m of undulator Ebeam = 125 GeV yield margin Power density on target (WG says OK but should check). Wei Gai (ANL) et al

Alternative Electron-Driven Source Will be a focus of study during the LCC phase T. Omori et al, Nucl. Instrum. Meth. A 672 (2012) 52-56

Light Higgs Factory Assume we do not need 10-Hz e+ production mode PAC ~ 120 MW  ~100 MW (at least for undulator) TDR still contains 10 Hz damping ring (100 ms store time) 10 Hz e+e- source and injectors Could we run 10 Hz collisions?

Higher rep rate running Not part of TDR scope! lumi factor: x2 x1.4 x1 reducing ML gradient issues for detectors? Snowmass scenario: http://arxiv.org/abs/1308.3726

Something to talk about  Issues for LHF 1st stage? Shorter linacs run at full gradient (31.5 MV/m) 10Hz operation would require additional AC power x2 RF AC power x1.5 Cryo power Requires feasibility study e.g. cryoplant capacity cost! Beyond TDR baseline!! Something to talk about 

TDR baseline scope & parameters Snowmass Scenario http://arxiv.org/abs/1308.3726 Phase 1 250 GeV L=0.75×1034 Phase 2 500 GeV L=1.8×1034 Phase 3 500 GeV L=3.6×1034 (lumi upgrade) Phase 3 250 GeV L=3.0×1034 (lumi upgrade @ 10Hz) TDR baseline scope & parameters

Last Words No technical show stoppers to higher luminosity God created SRF for high currents  It’s all about $$ Megawatts Risk Keep focused on the baseline physics case! Keep the upgrades in your pocket for refining arguments (AND risk mitigation)