Comparison and characterization of different tunnel layers, suitable for passivated contact formation Gordon LING(1), Zheng XIN(1), Cangming KE(1), Kitz.

Slides:



Advertisements
Similar presentations
Nanowire dye-sensitized solar cells
Advertisements

Atomic Layer Deposition of Cerium Oxide for Solid Oxide Fuel Cells Rachel Essex, Rose-Hulman Institute of Technology Jorge Ivan Rossero Agudelo, Christos.
Derek Wright Monday, March 7th, 2005
A New Design Tool for Nanoplasmonic Solar Cells using 3D Full Wave Optical Simulation with 1D Device Transport Models Liming Ji* and Vasundara V. Varadan.
Applications of Photovoltaic Technologies. 2 Solar cell structure How a solar cell should look like ?  It depends on the function it should perform,
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
School of Electrical and Electronic Engineering Queen’s University Belfast, N.Ireland Course Tutor Dr R E Hurley Northern Ireland Semiconductor Research.
Wei E.I. Sha, Wallace C.H. Choy, and Weng Cho Chew
Radiation damage in SiO2/SiC interfaces
Solar Power Program Clara Paola Murcia S. BS in Electrical Engineering (Universidad de Los Andes) Concentration in Power Systems / Minor in BA Semiconductor.
Surface Passivation of Crystalline Silicon Solar Cells: A Review Armin G. Aberle Progress in Photovoltaics: Research and Application 8, ,2000.
Monocrystalline Silicon Solar Cells June 10, 2015 Chapter VII.
Solar Cell Operation Key aim is to generate power by:
A-Si:H application to Solar Cells Jonathon Mitchell Semiconductors and Solar Cells.
Fabrication and Characterization of Ultra-narrow RRAM Cells Byoungil Lee and H.-S. Philip Wong Electrical Engineering, Stanford University.
Mobility Chapter 8 Kimmo Ojanperä S , Postgraduate Course in Electron Physics I.
EE415 VLSI Design The Devices: Diode [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
1 Challenge the future To do list. add extra slide about the coupling, at pressure level. Burn CD.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Fraunhofer Technology Center Semiconductor Materials Institute for Experimental Physics TU Bergakademie Freiberg Industrial aspects of silicon material.
胡淑芬個人小檔案 1 /60. The Nanoscale ■ m = 1 Ångstrom ■ m = 1 Nanometer ■ m = 1 Micrometer ■ m = 1 Millimeter 2 /60.
LBNL 9/15/06 Limiting factors in solar cell efficiency - how do they apply on the nano-scale ? D.G. Ast Cornell University.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Aikaterini Argyraki, Weifang Lu, Paul Michael Petersen, Haiyan Ou
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Conductive epitaxial ZnO layers by ALD Conductive epitaxial ZnO layers by ALD Zs. Baji, Z. Lábadi, Zs. E. Horváth, I. Bársony Research Centre for Natural.
Meeting 2014-October WP1 INL : Simulation for Laser Interference Lithography sample (PI32) -2. Possible alternative: patterning of the front electrode.
LPICM slides for WP3 Wanghua Chen and Pere Roca i Cabarrocas
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
G. Kartopu*, A.K. Gürlek, A.J. Clayton, S.J.C. Irvine Centre for Solar Energy Research, OpTIC Glyndŵr, St. Asaph, UK B.L. Williams, V. Zardetto, W.M.M.
We report, a simplified method for passivation of emitter surface of polycrystalline silicon solar cells at room temperature. The Olelyamine is used as.
Simulating Nanoscale Optics in Photovoltaics with the S-Matrix Method Dalton Chaffee, Xufeng Wang, and Peter Bermel Purdue University.
ALD coating of porous materials and powders
NOVEL APPROACH OF SOLAR ENERGY HARVESTING USING UV COMPATIBLE COATING ON Si DETECTOR (2DV.3.54) Bablu K. Ghosh, Ismail S., Khairul A. M., Kenneth Teo T.
Photovoltaic Module Characterization using Electroluminescence J.L. Crozier, E.E. van Dyk, F.J. Vorster Energy Postgraduate Conference 2013.
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L11 (page ). FET Operation slides Scaling Laws of FETs (slides 9-22)
LIGHT BACKSCATTERING ANALYSIS of Textured Silicon SAMPLES
Evaluation of Polydimethlysiloxane (PDMS) as an adhesive for Mechanically Stacked Multi-Junction Solar Cells Ian Mathews Dept. of Electrical and Electronic.
Why MOCVD and GaAs nanowires?
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Guojian Wang University of South Dakota
Exploring Schottky Junction Solar Cells
Prof. Jang-Ung Park (박장웅)
Capturing Ion-Soild Interactions with MOS structures
Simplified process flow for bonding interface characterization
Y.Y CHEN.
Bonding interface characterization devices
Fabrication and testing of III-V/Si tandem solar cells
Modeling Vacancy-Interstitial Clusters and Their Effect on Carrier Transport in Silicon E. Žąsinas, J. Vaitkus, E. Gaubas, Vilnius University Institute.
High Transconductance Surface Channel In0. 53Ga0
Meeting 指導教授:李明倫 學生:劉書巖.
Integration of DFT, Process and Device Modeling: The Virtual Fab
Optoelectronic Devices
TCAD Simulations of Silicon Detectors operating at High Fluences D
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
J. Shawn Addington David T. Wagner
Max Planck Institute for Solid State Research, Stuttgart, Germany
Gisselle Gonzalez1, Adam Hinckley2, Anthony Muscat2
Total Dose Response of HfSiON MOS Capacitors
Thermal oxidation Growth Rate
Lecture #15 OUTLINE Diode analysis and applications continued
Interface Engineering
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Empowering Photovoltaics
In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells by Heping Shen, Stefan T. Omelchenko,
Beyond Si MOSFETs Part 1.
Presentation transcript:

Comparison and characterization of different tunnel layers, suitable for passivated contact formation Gordon LING(1), Zheng XIN(1), Cangming KE(1), Kitz Jammaal BUATIS(1), Shubham DUTTAGUPTA(1), Jae Sung LEE(2), Archon LAI(2), Adam HSU(2), Johannes ROSTAN(2), Rolf STANGL(1) (1) Solar Energy Research Institute of Singapore (SERIS) (2) REC Solar Ltd. Pte. Singapore PVSEC-26 26 Oct 2016

Outline Introduction / motivation for passivated contacts Criteria for efficient hole-extracting passivated contacts Evaluation of tunnel oxide candidates Conclusion Future work Acknowledgements

Introduction Pushing the solar cell efficiencies limits Address key performance losses Continuous reduction of recombination losses predicted [1] Recombination losses Solar Cell % Optical losses Resistance losses [1] International Technology Roadmap for Photovoltaic 2016. Available at ITRPV.net

over un-passivated contact Motivation for passivated contacts Reducing contact recombination Metal Doped capping layer tunnel oxide layer n-Si wafer Metal n-Si wafer Jo,rear reduces significantly Tunnel layer used VOC (mV) JSC (mA/cm2) FF (%) Eff % improvement over un-passivated contact Published year Ref SiO2 718 42.1 83.2 25.1 N.A 2015 1 719 - 24.9 2 691 38.4 82.1 21.8 11.3 2014 3 AlOx 673 40.3 79.9 21.7 2.8 2011 4 683 39.6 78.1 21.2 2016 5 [1] S.W. Glunz et al., 31st EUPVSEC, 259-263 (2015). [2] A. Moldovan et al., Solar Energy Materials and Solar Cells, 142, 123-127 (2015). [3] F. Feldmann et al., Solar Energy Materials and Solar Cells, 120, Part A, 270-274 (2014) [4] D. Zielke et al., physica status solidi (RRL) – Rapid Research Letters, 5(8), 298-300 (2011) [5] Y. Tao et al., Progress in Photovoltaics: Research and Applications, 24(6), 830-835 (2016)

field-effect passivation Hole-extracting passivated contacts Key requirements for tunnel oxide layer Doped capping layer tunnel oxide layer n-Si wafer - + Tunneling relevant thickness (< 2 nm) Efficient hole extraction - High negative Qf Low interface Dit Efficient field-effect passivation Efficient chemical passivation Efficient hole extraction

Our work Evaluate tunnel oxide candidates for hole-extraction Asymmetrical lifetime samples were utilized Focus on front-side tunnel oxide candidates wet-SiOx (RCA oxide) Ozone-SiOx (UV photo-oxidation) ALD-AlOx (Spatial atomic layer deposition) Compare to a symmetrically passivated sample (Ref) n-Si wafer wet-SiOx SiNx n-Si wafer wet-SiOx SiNx ozone-SiOx n-Si wafer wet-SiOx SiNx ALD AlOx Si wafer resistivity : 2.7 Ω-cm Thickness : 140 µm n-Si wafer wet-SiOx SiNx

Our work Industrial, high-throughput ALD AlOx tunnel layer processing Uniform deposition rate: ~ 0.13 nm per ALD cycle 100 µs 80 µs 60 µs High-throughput industrial-scale thermal ALD reactor (Solaytec) 40 µs 20 µs 1.5 nm AlOx 0 µs

Significant boost in tunnel layer passivation quality with ALD AlOx Enhanced passivation with AlOx Effective carrier lifetime Comparable thickness for wet-SiOx, ozone-SiOx and AlOx (1.5 - 2.1 nm) τeff (AlOx) ≈ 100 τeff (wet-SiOx) τeff (AlOx) ≈ 100 τeff (ozone-SiOx) Significant boost in tunnel layer passivation quality with ALD AlOx n-Si wafer wet-SiOx SiNx n-Si wafer wet-SiOx SiNx ozone-SiOx n-Si wafer wet-SiOx SiNx ALD AlOx n-Si wafer wet-SiOx SiNx WHY ?  High negative interface charge

High negative fixed interface charge Qf Interface fixed charge density High Qf (-61012 cm-2), one order higher than wet-SiOx and ozone-SiOx Reduced surface recombination Efficient hole extraction AlOx n-Si + - 0.6V SiOx n-Si + - 0.07V + + [9] O.V. Aleksandrov et al., Semiconductors, 45(4), 467-473 (2011). [10] F. Gaspard et al., Electrical properties of thin anodic silicon dioxide layers grown in pure water. Vol. 22. 1987. 65-69. [11] S.C. Vitkavage et al., Journal of Applied Physics, 68(10), 5262-5272 (1990). [12] N.E. Grant et al., IEEE Electron Device Letters, 30(9), 922-924 (2009). [13] N.E. Grant et al., ECS Journal of Solid State Science and Technology, 3(2), P13-P16 (2014). [14] K. Imamura et al., Journal of Applied Physics, 107(5), 054503 (2010).

Comparable interface defect density Dit Comparable Dit for our wet-SiOx, ozone-SiOx and AlOx Dit lower than previously reported values for wet-SiOx / ozone-SiOx Thermal SiOx (>100 nm) Low Dit Too thick for contact passivation [11] S.C. Vitkavage et al., Journal of Applied Physics, 68(10), 5262-5272 (1990).   [15] H. Angermann, Applied Surface Science, 254(24), 8067-8074 (2008). [16] H. Angermann et al., Applied Surface Science, 258(21), 8387-8396 (2012). [17] H. Angermann, Applied Surface Science, 312, 3-16 (2014).

Comparison of Dit(E) distribution Dit,min for ALD AlOx is approximately at c-Si midgap energy Dit,min for wet-SiOx and ozone-SiOx are further off-midgap According to Angermann [16], this could be due to an increased micro surface roughness, leading to an increase in dangling bond defects Implication Need to improve the processing approach for the wet-SiOx and ozone-SiOx tunnel layers [16] H. Angermann et al., Applied Surface Science, 258(21), 8387-8396 (2012).

Deposition of capping layers First initial results Capping Layers Investigated Metal poly-Si(p) n-Si wafer Metal PEDOT:PSS tunnel oxide layer n-Si wafer Initial results PEDOT:PSS p-Si wafer Design Tunnel layer lifetime [us] (after capping) iVoc [mV] (after capping) Joe [fA/cm2] (after capping) I wet-SiOx 349.53 680 45 II ALD AlOx 151.7 655 133

Conclusion Efficient hole extracting passivated contacts should have: Ultra-thin tunnel relevant highly passivating oxide layer High negative fixed interface charge We can measure Qf and Dit(E) of ultra-thin tunnel layers AlOx seems to outperform wet-SiOx and ozone-SiOx Benefits from a high negative Qf (1 order higher) Efficient field-effect passivation (2 orders higher τeff) Efficient band bending (0.6V versus 0.07V) Organic capping layer significantly reduces Joe However: detailed investigations after various capping layer depositions are still pending!

Future work Acknowledgement Integration with different doped capping layers Integration at solar cell device level Acknowledgement This research work is supported by the EIRP-07 project “Passivated contacts for high-efficiency silicon wafer based solar cells” NRF2014EWT-EIRP001-006, in a joint collaboration between SERIS and REC Solar Pte. Ltd.

Thank you for your attention! More information www.seris.sg Dr Gordon LING gordon.ling@nus.edu.sg