ERROR DETECTION AND CORRECTION

Slides:



Advertisements
Similar presentations
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
Advertisements

10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
PART III DATA LINK LAYER. Position of the Data-Link Layer.
The Data Link Layer Chapter 3. Position of the data-link layer.
Unit 1 Protocols Learning Objectives: Understand the need to detect and correct errors in data transmission.
Error Detection and Correction
Chapter 10 Error Detection and Correction
Rutvi Shah1 ERROR CORRECTION & ERROR DETECTION Rutvi Shah2 Data can be corrupted during transmission. For reliable communication, errors must be detected.
Shashank Srivastava Motilal Nehru National Institute Of Technology, Allahabad Error Detection and Correction : Data Link Layer.
1 Kyung Hee University Data Link Layer PART III. 2 Kyung Hee University Position of the data-link layer.
1 Data Link Layer Lecture 20 Imran Ahmed University of Management & Technology.
PART III DATA LINK LAYER. Position of the Data-Link Layer.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
CIT 307 Online Data Communications Error Detection Module 11 Kevin Siminski, Instructor.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Data and Computer Communications by William Stallings Eighth Edition Digital Data Communications Techniques Digital Data Communications Techniques Click.
Unit 5 Lecture 2 Error Control Error Detection & Error Correction.
EEC4113 Data Communication & Multimedia System Chapter 5: Error Control by Muhazam Mustapha, October 2011.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
Error Detection and Correction
PREPARED BY: ENGR. JO-ANN C. VIÑAS
Overview All data can be corrupted, for reliable communications we must be able to detect and correct errors implemented at the data link and transport.
Lecture 5 Checksum. 10.2CHECKSUM Checksum is an error-detecting technique that can be applied to a message of any length. In the Internet, the checksum.
Computer Communication & Networks Lecture 9 Datalink Layer: Error Detection Waleed Ejaz
Lecture Focus: Data Communications and Networking  Data Link Layer  Error Control Lecture 19 CSCS 311.
Error Detection.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 PART III: DATA LINK LAYER ERROR DETECTION AND CORRECTION 7.1 Chapter 10.
1 Kyung Hee University Error Detection and Correction.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
Data Link Layer 1. 2 Single-bit error 3 Multiple-bit error 4.
ERROR DETECTION AND CORRECTION Chapter 8 Data Communications & Networking ERROR DETECTION AND CORRECTION Chapter 8 First Semester 2007/2008.
10.1 Types of Errors 10.2 Detection 10.3 Error Correction.
1 Kyung Hee University Prof. Choong Seon HONG Error Detection and Correction.
Error Detection and Correction
Simple Parity Check The simplest form of error detection is the parity check used with ASCII codes, originally on asynchronous modem links Each 7 bit ASCII.
9장 Error Detection and Correction
Error Detection and Correction
Introduction to Information Technologies
Data Link Layer.
Part III. Data Link Layer
Error Detection and Correction
ERROR CORRECTING CODES
Error Detection and Correction
CIS 321 Data Communications & Networking
Part III Datalink Layer 10.
Data Link Layer.
Error Detection Bit Error Rate(BER): It is the ratio of number Ne of errors appearing over a certain time interval t to the number Nt of 1 and 0 pulses.
EEC4113 Data Communication & Multimedia System Chapter 5: Error Control by Muhazam Mustapha, August 2010.
Packetizing Error Detection
Packetizing Error Detection
PART III Data Link Layer.
Basic concepts Networks must be able to transfer data from one device to another with complete accuracy. Data can be corrupted during transmission. For.
Chapter 7 Error Detection and Correction
Chapter 9 Error Detection and Correction
Introduction to Information Technologies
DATA COMMUNICATION Lecture-35.
Packetizing Error Detection
DATA COMMUNICATION Lecture-33.
Protocols and the TCP/IP Suite
Datornätverk A – lektion 7
Chapter 9 Error Detection and Correction
Error Detection and Correction
Error Detection and Correction
Error Detection and Correction
Error Detection and Correction
DATA COMMUNICATION Lecture-34.
Data Link Layer. Position of the data-link layer.
Presentation transcript:

ERROR DETECTION AND CORRECTION

ERROR DETECTION AND CORRECTION Types of Errors Detection Correction

Data can be corrupted during transmission Data can be corrupted during transmission. For reliable communication, errors must be detected and corrected.

Types of Error Single-Bit Error Burst Error

In a single-bit error, only one bit in the data unit has changed. Note: In a single-bit error, only one bit in the data unit has changed.

A burst error means that 2 or more bits in the data unit have changed. Note: A burst error means that 2 or more bits in the data unit have changed.

Error Detection Redundancy Parity Check Longitudinal Redundancy Check Cyclic Redundancy Check (CRC) Checksum

Note: Error detection uses the concept of redundancy, which means adding extra bits for detecting errors at the destination.

Redundancy

Even-parity concept

VERTICAL REDUNDANCY CHECK (VRC)

Note: In parity check, a parity bit is added to every data unit so that the total number of 1s is even (or odd for odd-parity).

Example 1 Suppose the sender wants to send the word world. In ASCII the five characters are coded as 1110111 1101111 1110010 1101100 1100100 The following shows the actual bits sent 11101110 11011110 11100100 11011000 11001001

Example 2 Now suppose the word world in Example 1 is received by the receiver without being corrupted in transmission. 11101110 11011110 11100100 11011000 11001001 The receiver counts the 1s in each character and comes up with even numbers (6, 6, 4, 4, 4). The data are accepted.

Example 3 Now suppose the word world in Example 1 is corrupted during transmission. 11111110 11011110 11101100 11011000 11001001 The receiver counts the 1s in each character and comes up with even and odd numbers (7, 6, 5, 4, 4). The receiver knows that the data are corrupted, discards them, and asks for retransmission.

Note: Simple parity check can detect all single-bit errors. It can detect burst errors only if the total number of errors in each data unit is odd.

LONGITUDINAL REDUNDANCY CHECK LRC LRC 10101010 Data plus LRC 11100111 11011101 00111001 10101001 10101001 00111001 11011101 11100111 11100111 11011101 00111001 10101001 10101010

Two-dimensional parity

CRC generator and checker

Data unit and checksum Sender Receiver T -T

Note: The sender follows these steps: The unit is divided into k sections, each of n bits. All sections are added get the sum. The sum is complemented and becomes the checksum. The checksum is sent with the data.

Note: The receiver follows these steps: The unit is divided into k sections, each of n bits. All sections are added to get the sum. The sum is complemented. If the result is zero, the data are accepted: otherwise, rejected.

Example 4 Suppose the following block of 16 bits is to be sent using a checksum of 8 bits. 10101001 00111001 The numbers are added as: 10101001 00111001 ------------ Sum 11100010 Checksum 00011101 The pattern sent is 10101001 00111001 00011101

Example 5 Now suppose the receiver receives the pattern sent in Example 7 and there is no error. 10101001 00111001 00011101 When the receiver adds the three sections, it will get all 1s, which, after complementing, is all 0s and shows that there is no error. 10101001 00111001 00011101 Sum 11111111 Complement 00000000 means that the pattern is OK.

Example 6 Now suppose there is a burst error of length 5 that affects 4 bits. 10101111 11111001 00011101 When the receiver adds the three sections, it gets 10101111 11111001 00011101 Partial Sum 1 11000101 Carry 1 Sum 11000110 Complement 00111001 the pattern is corrupted.

Correction Stop and wait Go Back N Sliding Window Hamming Code

Hamming Code

Number of redundancy bits r Data and redundancy bits Number of data bits m Number of redundancy bits r Total bits m + r 1 2 3 5 6 4 7 9 10 11

Positions of redundancy bits in Hamming code

Redundancy bits calculation

Example of redundancy bit calculation

Error detection using Hamming code

Burst error correction example