Preliminary result of FCC positron source simulation Pavel MARTYSHKIN

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

ILC positron source simulation update Wanming Liu, Wei Gai ANL 03/20/2011.
Linacs hall 300 MeV driving electron linac Positron linac.
Low energy electron beam as a nondestructive diagnostic tool for high power beams. P. Logachev, D. Malutin, A. Starostenko, BINP, RUPAC’2006, Novosibirsk.
Possible new EMMA injectors bdm. Motivation ALICE due to shut down soon Alternate EMMA injection (assuming EMMA project continues which it should …) Several.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
Preliminary result on Quarter wave transformer simulation a short lens with a high magnetic field and a long solenoidal magnetic field. Field profile of.
R.Chehab/Posipol2008/Hiroshima, june POSITRON SOURCES USING CHANNELING FOR ILC & CLIC R.Chehab, X.Artru, M.Chevallier, IPNL/IN2P3/CNRS, Universite.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
Radiation Dose for Targets T.Takahashi Hiroshima University.
Laser cooling of electron beams Valery Telnov Budker INP, Novosibirsk Nanobeam-2008 BINP, May 26-29, 2008.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
November 14, 2004First ILC Workshop1 CESR-c Wiggler Dynamics D.Rubin -Objectives -Specifications -Modeling and simulation -Machine measurements/ analysis.
-Factory Front End Phase Rotation Gas-filled rf David Neuffer Fermilab Muons, Inc.
LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY Positron Source Meeting, Jan30-Feb2.
CONVERSION EFFICIENCY AT 250 GeV A.Mikhailichenko Cornell University, LEPP, Ithaca, NY Presented at Positron Source Meeting Daresbury Laboratory,
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Status of Hybrid target R&D at KEK-LINAC T.Takahashi Hiroshima University March 2011 ALPG11 Eugene Collaborators: V. Strakhovenko O. Dadoun, R. Chehab,
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
Positron capture simulation for 300Hz electrondriven scheme M. Kuriki, Y. Seimiya, T. Takahashi (Hiroshima U.) T. Okugi, M. Sato, J. Urakawa, T. Omori.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
R.Chehab/FCPPL2010/Lyon1 AN HYBRID POSITRON SOURCE FOR ILC -Collaboration IN2P3-IHEP, with BINP, KEK, Hiroshima-U, CERN- X.Artru, R.Chehab, M.Chevallier.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Positron Source for Linear Collider Wanming Liu 04/11/2013.
Recycler Injection with Carbon Foils Dave Johnson, Alexandr Drozhdin, Leonid Vorobiev September 8, 2010 Project X Collaboration Meeting.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
Masao KURIKI (Hiroshima University)
S.M. Polozov & Ko., NRNU MEPhI
Beam dynamics simulation with 3D Field map for FCC RF gun
Positron production rate vs incident electron beam energy for a tungsten target
Positron Source and Injector
Positron Sources of Next generation B-factories (SuperKEKB, SuperB)
Update on e+ Source Modeling and Simulation
KEKB/SuperKEKB positron source a review and the status
Test of Hybrid Target at KEKB LINAC
Status and prospects of VEPP-5 Injection Complex
NC Accelerator Structures
Injection facility for Novosibirsk Super Charm Tau Factory
ILC RDR baseline schematic (2007 IHEP meeting)
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
S-band RF gun based on new type accelerating structure
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
Polarized Positrons at Jefferson Lab
CEPC Injector Damping Ring
CEPC Injector positron source
Advanced Research Electron Accelerator Laboratory
UPDATE OF POSITRON PRODUCTION CODE KONN
MEBT1&2 design study for C-ADS
Physics Design on Injector I
A POSITRON SOURCE USING CHANNELING IN CRYSTALS FOR LINEAR COLLIDERS
CEPC Injector positron source
High Charge Low Emittance RF Gun for SuperKEKB
CEPC injector beam dynamics
CEPC Injector Linac beam dynamics
PSB magnetic cycle 900 ms MeV to 2 GeV
Injection design of CEPC
CEPC injector beam dynamics
Minimized emittance for high charge with multi cell superconducting guns and solenoidal focusing D. Lipka, BESSY.
Injector for the Electron Cooler
Update on ERL Cooler Design Studies
CDR2 – Injection System Injection system overview (Seeman) (2 pages)
He Zhang, David Douglas, Yuhong Zhang MEIC R&D Meeting, 09/04/2014
Electron mode A B C D > 4 GeV e- θ g e- DR α PS
Presentation transcript:

Preliminary result of FCC positron source simulation Pavel MARTYSHKIN BINP, Novosibirsk

Target parameters and computation optimum target thickness and total conversion ration total target deposition energy, peak energy deposition density target design, cooling and size Flux Concentrator parameters peak field optimization optimal total length optimization of a longitudinal magnetic field profile Bridge coil & solenoid solenoid field optimization optimization of a total longitudinal magnetic field profile FC + Bridge coil + Solenoid 01.05.2017

Tungsten radiation length Xo is 0.35 cm. A positron total production rate for electron beam energy of 4.5 GeV (left). Total energy deposition in tungsten target normalized by total electron bunch energy (right). Tungsten radiation length Xo is 0.35 cm. e- bunch charge population energy Target power Deposition (4.5Xo) 10 nC 6.25∙1010 45 J 396 W 790 W 01.05.2017

Peak energy deposition density 2x10nC (left). Total energy deposition in tungsten target normalized by total electron bunch energy (right). Tungsten radiation length Xo is 0.35 cm. W74Re26 material has a PEDD limit of 35 J/g 01.05.2017

Positron production unit sketch 01.05.2017

FC longitudinal field profile simple conical cavity shape front aperture is 10 mm rear aperture is 70 mm length is 150 mm 01.05.2017

accelerating rate is 30 MeV/m 2 section with length of 3m Energy(MeV) ─ length(RF-phase degrees) distribution of positron bunch after 2 accelerating section accelerating rate is 30 MeV/m 2 section with length of 3m section aperture diameter is 20 mm FC peak field is 7.5 Tesla solenoid uniform field is 0.5 Tesla FC length is 150 mm Offset between target and FC peak field position is 7mm Envelope applying for a positron yield estimation (±2σ ≈ 27o RF phase). 01.05.2017

accelerating rate is 30 MeV/m 2 section with length of 3m Energy(MeV) ─ length(RF-phase degrees) distribution of positron bunch after 2 accelerating section accelerating rate is 30 MeV/m 2 section with length of 3m section aperture diameter is 20 mm FC peak field is 7.5 Tesla solenoid uniform field is 0.5 Tesla FC length is 150 mm Offset between target and FC peak field position is 7mm Envelope applying for a positron yield estimation (±2σ ≈ 27o RF phase). 01.05.2017

Solenoid field is 0.7 Tesla RMS emittance is ≈ 10.5 µm Positron X-emittance rad*cm FC peak field is 7.5 Tesla Solenoid field is 0.7 Tesla RMS emittance is ≈ 10.5 µm Positron X-emittance rad*cm FC peak field is 7.5 Tesla Solenoid field is 0.5 Tesla RMS emittance is ≈ 8.5 µm 01.05.2017

Positron yield and emittance estimation FC field 7.5 Tesla solenoid field 0.5 Tesla solenoid field 0.7 Tesla Positron yield Ne+/Ne- 0.7 x channel transmission 0.92 x channel transmission Emittance, µm 8.5 10.5 channel transmission can be not above of 60 % 01.05.2017

length(RF-phase degrees) of positron bunch Envelope applying for a positron yield estimation (±2σ ≈ 27o RF phase). 01.05.2017

vs Flux Concentrator peak field and solenoid field S-band structure linac positron yield after solenoid focusing (250 MeV, with conversion electron bunch energy of 6 GeV) vs Flux Concentrator peak field and solenoid field 1.3 Positron bunch population injected to main ring 3.3∙1010 Safety factor is ~ 2. Yield should be (taking safety factor) for electron bunch charge: 8 pC ~ 1.3 Ne+/Ne- 10 pC ~ 1.0 Ne+/Ne- 1.0 10.02.2017

vs Flux Concentrator peak field and solenoid field L-band structure linac positron yield after solenoid focusing (250 MeV, with conversion electron bunch energy of 6 GeV) vs Flux Concentrator peak field and solenoid field L-band linac has 2 time higher of a positron yield in comparison with S-band. 10.02.2017

VEPP-5 Flux Concentrator 10.02.2017

VEPP-5 forinjector FC magnetic field

Single turn Flux Concentrator for ILC positron source Size Elliptical cylinder 120x180 mm Total length 170 mm Conical part length 100 mm Min cone diameter 16 mm Max cone diameter 63 mm Cone angle 26 degrees Turns number 16 (9,6x12 mm) Cylindrical hole diameter 70 mm 17.06.2015 10.02.2017

Minimal Cone diameter is 16 mm 17.06.2015 Minimal Cone diameter is 16 mm Transverse magnetic field components on a longitudinal axis of Flux Concentrator (bottom) Longitudinal magnetic field component on a longitudinal (top) Peak current 25 kA Pulse duration 25 µs Target ohmic losses 10 J/pulse FC ohmic losses 160 J/pulse

FC magnetic field simulation with a target close setup Target computation positron production rate vs an electron bunch energy total deposited power in a target material defines target type, target cooling, target size PEDD peak energy deposition density (W74Re26 material has a PEDD limit of 35 J/g) FC magnetic field simulation with a target close setup Positron yield for S-band and L-band structure with a real FC magnetic field FC magnetic field peak optimization solenoid field optimization bridge coils field profiles optimization DR ring energy acceptance, positron bunch length? 10.02.2017