Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system

Slides:



Advertisements
Similar presentations
Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Advertisements

FIRB Microsistemi e Nanomateriali Magnetici Tematica T4 Films e Multistrati Nanocompositi Magnetici Multistrato Laboratorio Superfici M. Carbucicchio,
Uniaxial magnetic anisotropy tuned by nanoscale ripple formation: ion-sculpting of Co/Cu(001) thin films R. Moroni Unità INFM di Genova Dipartimento di.
Seminarul National de Nanostiinta si Nanotehnologie
2Instituto de Ciencia de Materiales de Madrid,
Exchange Bias: Interface vs. Bulk Magnetism
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS): A TOOL FOR THE CHARACTERIZATION OF SPUTTERED NIOBIUM FILMS M. Musiani Istituto per l’Energetica e le Interfasi,
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
Superparamagnetism(SP)M) Properties and applications Kang Liu Boston University.
Exchange Bias from Double Multilayer Structures C. H. Marrows, P. Steadman, M. Ali, A. T. Hindmarch, and B. J. Hickey Department of Physics and Astronomy,
Università Cattolica del Sacro Cuore
IV Congresso Italiano di Fisica del Plasma Firenze, Gennaio 2004 Francesco Valentini Dipartimento di Fisica, Università della Calabria Rende (CS)
Ion-beam Sputtering Deposition Vacuum System Thickness Monitor Substrate Heater (1000°C) Kaufman Ion Gun Multiple Target Holder Ar Cathode Anode Glow Discharge.
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Sputtered ZnO based DMS thin films for nanoscale spintronics devices Background & Introduction The wurtzite transparent semiconductor ZnO was predicted.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Magnetic Data Storage. 5 nm Optimum Hard Disk Reading Head.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
Magnetic Properties Scott Allen Physics Department University of Guelph of nanostructures.
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
High-temperature series expansion study Kok-Kwei Pan ( 潘國貴 ) Physics Group, Center of General Education Chang Gung University ( 長庚大學 ) No. 259, Wen-Hua.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
October Milano Core-Pedestal Energy Confinement. Empirical Scaling Laws and "stiff" profiles. A. Jacchia 1, F. De Luca 2 1 Consiglio Nazionale.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Spin dynamics in Ho 2-x Y x Sn 2 O 7 : from the spin ice to the single ion magnet G. Prando 1, P. Carretta 1, S.R. Giblin 2, J. Lago 1, S. Pin 3, P. Ghigna.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
Spin Dynamics of Superfluid 3 He in Aerogel Osamu Ishikawa Osaka City University.
  Satyendra Prakash Pal DEPARTMENT OF PHYSICAL SCIENCES
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Controlled Self-assembly of Colloidal Cobalt Nanocrystals Yuping Bao, Michael Beerman and Kannan M. Krishnan Cobalt Nanocrystals Synthesis BF TEM image.
MOKE RESULTS JM micron square pads 50nm Ni/ C10-dithiol / 20nm Co Line scan across Pad
Molecular Dynamics Study of Ballistic Rearrangement of Surface Atoms During Ion Bombardment on Pd(001) Surface Sang-Pil Kim and Kwang-Ryeol Lee Computational.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Magnetic Force Microscopy
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Applications of Spin-Polarized Photoemission P. D. Johnson, Annual Rev. Mater. Sci. 25 (1995) Combined spin –integrated/resolved detector: Giringhelli,
What are the magnetic heterolayers good for Basic components of modern spintronic devices Conventional electronics has ignored the spin of the electron.
Effects of Arrays arrangements in nano-patterned thin film media
Effect of sputter-particle flux variations on properties of ZnO:Al thin films S. Flickyngerova 1, M. Netrvalova 2,L. Prusakova 2, I. Novotny 1, P.Sutta.
Misura del grado di disordine e dell’indice di frattalità mediante tecniche NMR di diffusione anomala Silvia Capuani*, Marco Palombo°, Alessandra Caporale*,
Epitaxial films of tetragonal Mn 3 Ga: magnetism and microstructure F. Casoli 1,*, J. Karel 2, P. Lupo 3, L. Nasi 1, S. Fabbrici 1,4, L. Righi 1,5, F.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Non-equilibrium dynamics in superspin glass systems
New Results of the Color Diversity Problem Jack Raymond (英偉文) and K. Y
High-temperature ferromagnetism
Superconducting Qubits
Effect of Heat Treatment on Properties of Sputtered Co100-xCux Film
Light propagation in topological two-level structures
P2-D125 Decrement of the Exchange Stiffness Constant of CoFeB thin films with Ar gas pressure. Jaehun Cho, Jinyong Jung, Ka-Eon Kim, Sukmock Lee Chun-Yeol.
101° Congresso della societa italiana fisica
COMPLEX ELECTRON ENERGY DISTRIBUTIONS IN ASYMMETRIC RF-DC DISCHARGES
Molecular Dynamics Study on Deposition Behaviors of Au Nanocluster on Substrates of Different Orientation S.-C. Leea, K.-R. Leea, K.-H. Leea, J.-G. Leea,
Experimental investigation of Superspin glass dynamics
Criteria of Atomic Intermixing during Thin Film Growth
Micromagnetic Simulations of Systems with Shape-Induced Anisotropy
Motivation Oscillatory magnetic anisotropy originating from
Collective Dynamics of Nanoscale Magnets
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
Sang-Pil Kim and Kwang-Ryeol Lee Computational Science Center
Liquefying a gas by applying pressure
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system L. Del Bianco, E. Bonfiglioli, F. Chinni, M. Tamisari, F. Spizzo Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Italy lucia.delbianco@unife.it 101° Congresso Nazionale SIF, Roma 21-25 Settembre 2015

Re-entrant antiferromagnetism Objective Description of the dynamic magnetic behavior of the antiferromagnet in exchange-coupled FM/ AFM NiFe/IrMn bilayers From the continuous NiFe/IrMn film to dot arrays: spatial confinement and exchange coupling mechanism Re-entrant antiferromagnetism We exploit the exchange coupling with a soft FM as a tool to gain an insight into the magnetic properties of the AFM We study the magnetic properties of the AFM phase to gain an insight into the exchange coupling mechanism (exchange bias effect)

NiFe/IrMn film Si / Cu[5 nm] / Py[5 nm] / IrMn[6 nm] / Cu [5 nm] Py: Ni80Fe20 IrMn: Ir25Mn75 Reference film: Si / Cu[5 nm] / Py[5 nm] / Cu [5 nm] Deposition by dc-magnetron sputtering Ar atmosphere, deposition rate  0.2 nm/s Hdep = 400 Oe

(5-400 K temperature range) Hysteresis loops (5-400 K temperature range) Change of magnetic regime at T ~ 100 K

5 K 400 K step 1: FC@ Hcool =500 Oe step 2: M vs T @ Hinv Magnetization reversal study - SQUID measurement procedure

Py Measurement on reference Py film in H = 50 Oe Pronounced magnetization decrease in the bilayer is ascribed to the reduction of the exchange magnetic anisotropy in the Py layer

AFM film consists of non-interacting nanograins Py AFM film consists of non-interacting nanograins  Distribution of effective anisotropy energy barriers DE We obtain information on the anisotropy energy barrier distribution of the AFM as it is felt by the FM component F. Spizzo et al., J. Phys.: Condens. Matter 25, 386001 (2013)

V = 25 kTB/KIrMn  size ~ 10 nm KIrMn = 1.8  106 erg/cm3 Py spin-glass-like behavior Py grani: magnetically uncorrelated bulk AFM nanograins V = 25 kTB/KIrMn  size ~ 10 nm KIrMn = 1.8  106 erg/cm3

TEM results confirm our prediction on the structure of the AFM phase Cu IrMn NiFe 10 nm Si (b) Si Cu Existence of a disordered AFM region at the interface with the NiFe phase TEM results confirm our prediction on the structure of the AFM phase

T T > 100 K Hex decreses and finally the EB effect disappears No chance to observe EB effect at the temperature above which the AFM bulk nanograins enter the superparamagnetic regime T T > 100 K Only the interfacial AFM spins tightly anchored to the spin lattice of the bulk AFM nanograins contribute to Hex Hex decreses and finally the EB effect disappears T ~ 100 K The frozen collective state breaks up. Polarizing action of bulk AFM spins on the interfacial ones prevents the development of a paramagnetic state. Re-entrant antiferromagnetism T< 100 K AFM interfacial spins are frozen and subjected to a high effective anisotropy. Hex is maximized

From the continuous film to dot arrays Si / Cu[5 nm] / IrMn[10 nm] / Py [5 nm] Electron beam lithography and lift-off dc-magnetron sputtering (Hdep = 400 Oe) FM AFM spatial confinement FM AFM

A = 1000 nm B = 500 nm C = 300 nm MOKE - FC hysteresis loops (Hcool = 500 Oe; 10-300 K temperature range) (Oe) (Oe)

(Oe) At low temperature The correlation length among the AFM interfacial spins increases with reducing T

Dependence of Hex on the AFM correlation length l Object Oriented MicroMagnetic Framework Dot size = 1200 nm OOMMF cell size = 10 nm KAFM = 2  107 erg/cm3 cells: FM/AFM exchange interaction = 10-7 erg/cm Different cell size: 10, 20, 100, 200, 300 nm FM AFM l F. Spizzo et al., Phys. Rev. B 91 (2015) 064410

Dependence of Hex on the AFM correlation length l (Oe) Object Oriented MicroMagnetic Framework Dependence of Hex on the AFM correlation length l Dot size = 1200 nm All the AFM cells with high K (100% pinning centers) Different cell size: 10, 20, 100, 200, 300 nm Hex increases as D/l 1

Spin correlation effect (Oe) At low temperature Correlated AFM spins exert a stronger pinning action as D/l 1 Spin correlation effect

Exchange coupling mechanism Conclusions Re-entrant antiferromagnetism  Passage from the glassy to the AFM state Re-entrant magnetic regime: the magnetism of AFM interfacial spins is sustained by stable nanograins. Exchange coupling mechanism Low temperature: collective freezing of the disordered AFM spins  high Hex. High temperature: FM/AFM coupling governed by a fraction of interfacial AFM spins. Spatial confinement  spin correlation effect MIUR FIRB2010 - NANOREST A. Gerardino, A. Notargiacomo IFN-CNR, I-00156 Roma, Italy G. Barucca Univ. Politecnica delle Marche, I-60131 Ancona, Italy Thanks for attention