Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.

Slides:



Advertisements
Similar presentations
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Advertisements

Steady State Nonisothermal Reactor Design
Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Last time 3/6/08. D=v o / V Bioreaction Engineering Wash Out: 1.) Neglect Death Rate and Cell Maintenance 2.) Steady State.
Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Fixed Bed Reactor Quak Foo Lee Chemical and Biological Engineering
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Mole balance for chemical reaction engineering (Design Equations for reactors) Lec 3 week 3.
ITK-330 Chemical Reaction Engineering
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L12-1 Review: Thermochemistry for Nonisothermal.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
CHE 354 Chemical Reactor Design
ChE 402: Chemical Reaction Engineering
ChE 402: Chemical Reaction Engineering
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
P8-8 The elementary gas phase reaction A  B + C is carried out adiabatically in PFR packed with catalyst. Pure A enters the reactor at a volumetric flow.
Steady-state Nonisothermal reactor Design Part I
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Review Chapters (1 – 6) CHPE550: Catalysis and Catalytic Processes
Conversion and the Design Equations
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
13. Reactor Engineering: Reactor Design
Presentation transcript:

Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 19 Class Lecture 17–Tuesday Energy Balance Fundamentals Adiabatic reactors

Today’s Lecture Energy Balance, Rationale and Overview T V k X Let’s calculate the volume necessary to achieve a conversion, X, in a PFR for a first-order, exothermic and adiabatic reaction. The temperature profile might look something like this: T V k X

Energy Balance, Rationale and Overview Mole Balance: Rate Law: Stoichiometry: Combine:

Energy Balance, Rationale and Overview We cannot solve this equation because we don’t have X either as a function of V or T. We need another equation. That equation is: The Energy Balance

User Friendly Equations Relate T and X or Fi 1. Adiabatic CSTR, PFR, Batch or PBR

Adiabatic T XEB Exothermic T0 T XEB Endothermic T0

User Friendly Equations Relate T and X or Fi 2. CSTR with heat exchange: UA(Ta-T) and a large coolant flow rate T Ta

User Friendly Equations Relate T and X or Fi 3. PFR/PBR with heat exchange FA0 T0 Coolant Ta 3A. PFR in terms of conversion

User Friendly Equations Relate T and X or Fi 3B. PBR in terms of conversion 3C. PBR in terms of molar flow rates

User Friendly Equations Relate T and X or Fi 3D. PFR in terms of molar flow rates 4. Batch

User Friendly Equations Relate T and X or Fi 5. For Semibatch or unsteady CSTR 6. For multiple reactions in a PFR (q reactions and m species) Let’s look where these User Friendly Equations came from.

Energy Balance Reactor with no Spatial Variations

Energy Balance Reactor with no Spatial Variations Rate of flow of heat to the system from the surroundings

Energy Balance Reactor with no Spatial Variations Rate of flow of heat to the system from the surroundings Rate of work done by the system on the surroundings - -

Energy Balance Reactor with no Spatial Variations Rate of flow of heat to the system from the surroundings Rate of work done by the system on the surroundings Rate of energy added to the system by mass flow into the system - + - +

Energy Balance Reactor with no Spatial Variations Rate of flow of heat to the system from the surroundings Rate of work done by the system on the surroundings Rate of energy added to the system by mass flow into the system Rate of energy leaving system by mass flow out of the system - + - - + -

Energy Balance Reactor with no Spatial Variations Rate of accumulation of energy within the system Rate of flow of heat to the system from the surroundings Rate of work done by the system on the surroundings Rate of energy added to the system by mass flow into the system Rate of energy leaving system by mass flow out of the system = - + - = - + -

Energy Balance on an open system: schematic.

OK folks, here is what we are going to do to put the above equation into a usable form. 1. Replace Ui by Ui=Hi-PVi 2. Express Hi in terms of heat capacities 3. Express Fi in terms of either conversion or rates of reaction 4. Define ΔHRx 5. Define ΔCP 6. Manipulate so that the overall energy balance is in terms of the User Friendly Equations.

Intro to Heat Effects Assumptions: Recall: =0 Other energies small compared to internal Recall:

Intro to Heat Effects Substituting for Steady State:

Intro to Heat Effects General Energy Balance : For Steady State Operation:

Intro to Heat Effects

Intro to Heat Effects For No Phase Changes Constant Heat Capacities Enthalpy of formation at temperature TR Constant Heat Capacities Heat of reaction at temperature T

Intro to Heat Effects Substituting back into the Energy Balance Adiabatic (Q=0) and no Work

Intro to Heat Effects

Intro to Heat Effects Substituting back into the Energy Balance

Adiabatic Energy Balance Adiabatic (Q=0) and no Work X T0 T Exothermic

Example: Adiabatic PFR 1) Mole Balance: 2) Rate Laws:

Example: Adiabatic PFR 3) Stoichiometry: 4) Energy Balance First need to calculate the maximum conversion which is at the adiabatic equilibrium conversion.

Example: Adiabatic PFR

Example: Adiabatic PFR Xe Adiabatic equilibrium conversion and temperature

Example: Adiabatic PFR We can now form a table. Set X, then calculate T, -VA, and FA0/-rA, increment X, then plot FA0/-rA vs. X: FA0/-rA X

End of Web Lecture 19 Class Lecture 17