5 Linear Free-Energy Relationships.

Slides:



Advertisements
Similar presentations
Nucleophilic Substitutions and Eliminations
Advertisements

Chapter 3: Acid-Base Chemistry Reaction Classification: Substitution: Addition: Elimination: Rearrangement: We’ll deal with these later…
Organic Reactions Dr. M. Abd-Elhakeem Faculty of Biotechnology Organic Chemistry Chapter 3.
Chapter 20 Carboxylic Acids and Nitriles
4- 1 Br ø nsted-Lowry and Lewis Acids/Bases Acid Dissociation Constants, pKa, the Relative strength of Acids and Bases. [electron pushing, arrows, electronic.
I Substituent Effects in Electrophilic Aromatic Substitution.
Structural Effects on Acidity. Acidity is associated not only with the tendency of compound to yield hydrogen in H 2 O but also to accept an electron.
Acids and Bases Calculating Percent Ionization Percent Ionization =  100 In this example [H 3 O + ] eq = 4.2  10 −3 M [HCOOH] initial = 0.10 M [H 3 O.
Chapter 3 An Introduction to Organic Reactions: Acids and Bases
Bond Polarity and Electronegativity
Part 3iii CHM1C3 Substitution Reactions: Structure of Substrate.
4. Structural Effects on Reactivity
4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson.
Amino acids as amphoteric compounds
Quantitative Structure-Activity Relationships (QSAR)  Attempts to identify and quantitate physicochemical properties of a drug in relation to its biological.
Chapter 8: Organic Acids and Bases
4- 1 Br ø nsted-Lowry and Lewis Acids/Bases Acid Dissociation Constants, pKa, the Relative strength of Acids and Bases. [electron pushing, arrows, electronic.
Chapter 1 An Introduction to Organic Reactions Nabila Al- Jaber
Makeup midquarter exams Wed., Mar 9 5:30-7:30 pm 131 Hitchcock Hall You MUST Sign up in 100 CE Please do so as soon as possible.

Aromatic Carboxylic Acid 1 Dr Md Ashraful Alam 2 A carboxylic acid Contains a carboxyl group, which is a carbonyl group (C=O) attached to a hydroxyl.
John E. McMurry Paul D. Adams University of Arkansas Organic Acids and Bases.
1.3 Covalent Bonding - Electrons Shared Bonding 1.2 Ionic Bonding - Electrons Transferred type of bond that is formed is dictated by the relative.
WWU- Chemistry Substituent Effects on the Acidities of Carboxylic Acids.
Substituent Effects - Induction
Alcohols, Phenols, and Thiols Nanoplasmonic Research Group Organic Chemistry Chapter 7 Part I.
Reaction Orientation (ortho/meta/para)
Aromaticity: Reactions of Benzene and Substituted Benzenes
Generalized Polar Reactions An electrophile, an electron-poor species, combines with a nucleophile, an electron-rich species An electrophile is a Lewis.
Orbitals – s, p – different shapes Valence Bond model – hybridisation,  and  bonds Conjugation (14.1) Alternate  bonds Hyperconjugation (6.6)  bonds.
Chapter 20: Carboxylic Acids and Nitriles Based on McMurry’s Organic Chemistry, 6 th edition ©2003 Ronald Kluger Department of Chemistry University of.
An Introduction to Organic Reactions
Hammett plots in the world of enzymes
Structure / Reactivity Relationships
Acids and Bases: Functional Groups (Part 2)
Introduction The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity causes the carbon.
University of California,
CH 20: Carboxylic Acids and Nitriles
Chapter 8: Organic Acids and Bases
Water: The solvent for Biochemical Reactions
Reactions of Aromatic Compounds
Eric Amerling & Christine Nervig University of Utah
1 Introduction.
CHE2060 Lecture 5: Acid-base chemistry
Chapter 20: Carboxylic Acids and Nitriles
Organic Chemistry, 6th ed.
CHE2060 Lecture 5: Acid-base chemistry
Acids and Bases Unit 2.
Energy Diagram =>.
Acids and Bases Unit 3.
Naming: carbon chain stem + oic
Quantitative Measurement of Substituent Effects on Chemical Reactivity
Part 5: SN1 & SN2; Elimination & Condensation Rxns
Introduction The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity causes the carbon.
Titration Curves.
Part 5: SN1 & SN2; Elimination & Condensation Rxns
William H. Brown Christopher S. Foote Brent L. Iverson
Chapter 3 An Introduction to Organic Reactions: Acids and Bases
How can we estimate relative acid strength without a pKa table?
Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon.
Phenols Ar-OH Phenols are compounds with an –OH group attached to an aromatic carbon. Although they share the same functional group with alcohols,
Chapter 20: Carboxylic Acids and Nitriles
CARBOXYLIC ACIDS.
Mechanism of Electrophilic Aromatic Substitution
Chapters 20/21 carboxylic acids and derivatives
Isolated and Conjugated Dienes
Phenols 340 Chem 1st 1439.
Acids and Bases CHAPTER TWO
Chapter 20 Carboxylic Acids and Nitriles
Chapter 20: Carboxylic Acids and Nitriles
Presentation transcript:

5 Linear Free-Energy Relationships

The Hammett Equation The Substituent Constant, s Polar reactions are strongly affected by substituents on the equilibrium constants and rates of reactions of organic molecules and ions. 1937, Louis P. Hammett suggested that the effects of meta and para substituents on the ionization constants of benzoic acids could be predictors of the electronic influences of substituents in a variety of reactions. Why? (1) A large number of substituted benzoic acids are readily available (2) Ionization constants are easily determined (3) Substituents on aromatic rings are held at fixed distances from the points of reaction.

The Hammett Equation The Substituent Constant, s Why not ortho substituents? They might influence reactions by steric inhibition of access to the reaction center, or by steric inhibition of resonance, or by hydrogen bonding effects. Definition of a substituent constant, s s = log (K/KH) in H2O at 25 oC K = acidity constant of substituted benzoic acid KH = acidity constant of benzoic acid s = log K – log KH = pKH – pK

The Hammett Equation The Substituent Constant, s s meta and s para values indicates that they represent a measure of the electron-donating and electron-attracting powers of the substituents. (1) Strongly electron-attracting groups such as N2+, NO2, and CF3 groups have large positive s values - increase of the acidity constants of benzoic acids (2) Strongly electron-donating groups such as NH2 and OH groups have large negative s values - decrease of the acidity constants of benzoic acids

The Hammett Equation The Substituent Constant, s

The Hammett Equation The Substituent Constant, s

The Hammett Equation The Substituent Constant, s Comparison of the effects of the same substituents in meta and para positions. In the case of NH2 group, the absolute value of s para is much larger than that of s meta. - Electron-donating ability of the amino group is largely due to resonance effects. - The para position can directly distribute electrons into the carboxyl group of benzoic acid. - Carboxyl group is more difficult to become a negatively charged carboxylate anion. - Low acidity constant

The Hammett Equation The Substituent Constant, s In contrast, there is no direct interaction between a meta- amino group and the carboxyl group of benzoic acid. Most substituents do have somewhat larger effects in para position than in meta position. Almost all substituents tend to induce positive or negative charges in para position and have smaller effects on meta positions.

The Hammett Equation The Substituent Constant, s For a few substituents such as the OH and OCH3 groups, smeta and spara have opposite signs. Why? Two different factors (1) Inductive effect (2) Resonance effect For the OH and OCH3 groups, the two types of electronic effects work in opposite directions. para substituents: resonance effect > the inductive effect meta substituents: resonance effect < the inductive effect Halogen atoms are poorer electron donors than oxygen atoms and thus s values have positive signs, but the values are larger in meta position than in para position.

The Hammett Equation The Substituent Constant, s For s values for substituents in polysubstitued aromatic Molecules are approximately additive. (Example) 3-methyl-5-nitrobenzoic acid s = (-0.07) + (0.71) = 0.64

The Hammett Equation The Reaction Constant, r Hammett diagrams log K/KH for phenylacetic acids Hammett equation log K/KH = rs log K – log KH = rs r = slope of the line (the reaction constant)

The Hammett Equation The Reaction Constant, r The significance of r values

The Hammett Equation The Reaction Constant, r The significance of r values - A reaction with a positive r value is assisted by electron- attracting substituents. - A reaction with a negative r value is assisted by electron- donating substituents (Example) Ionization of carboxylic acids have positive values of r In contrast, the basicities of carboxylate anions would have negative r values

The Hammett Equation The Reaction Constant, r The Hammett equation as a linear free-energy relationship

The Hammett Equation The Reaction Constant, r The Hammett equation as a linear free-energy relationship

The Hammett Equation The Reaction Constant, r Reaction mechanism and the Hammett equation It can offer important information about the mechanism of chemical reactions. The sign and magnitude of r can be of particular significance. (Example) The hydrolysis of benzoyl chlorides in water Several mechanisms can be proposed.

The Hammett Equation The Reaction Constant, r Reaction mechanism and the Hammett equation - Proposed mechanism (1) Water molecule might add to the carbonyl groups to form tetrahedral intermediates in slow, rate-limiting step.

The Hammett Equation The Reaction Constant, r Reaction mechanism and the Hammett equation - Proposed mechanism (2) Carbon-chlorine bonds might dissociate in slow, rate- limiting steps.

The Hammett Equation The Reaction Constant, r Reaction mechanism and the Hammett equation - The dissociation of benzoyl chlorides to form carbocations would be assisted by EDG, but the addition of water to the carboxyl groups should be fastest in benzoyl chlorides with EWG. - Hammett plot for this reaction has a positive value of r is consistent with mechanism (1).

The Hammett Equation s+ and s- Constants In some reactions strongly EDG in para positions accelerate the reaction rates far more than would be predicted from their s values. (Examples) SN1 reactions of t-cumyl chlorides

The Hammett Equation s+ and s- Constants (Examples) SE reactions of aromatic rings In two reactions direct conjugation may exist between the para substituents and empty orbitals in TS. In these cases, modified para-substituent constants, s+ are often useful.

The Hammett Equation s+ and s- Constants

The Hammett Equation Curved Hammett Plots The reaction has undergoes a change in mechanism as the electronic effects of the substituents changed.

The Hammett Equation Curved Hammett Plots

The Hammett Equation Other Application Acrylic acids - Excellent correlation between spara values for substituents at C3 of trans-substituted acrylic acids and the pKa of acids. Comparatively large r value, +2.23. X group is closer to carboxyl group than substituent in benzoic acids

Separation of polar, Resonance, and Steric Effects Aliphatic Systems with Fixed Geometries

Separation of polar, Resonance, and Steric Effects Aliphatic Systems with Fixed Geometries

Separation of polar, Resonance, and Steric Effects Aliphatic Systems with Fixed Geometries

Separation of polar, Resonance, and Steric Effects The Taft Equation Effect of substituents on the rates of reactions of a series of esters, XCO2R. - If R is constant, the rates of reactions depend on the inductive, resonance, and steric effects of group X. - If X is saturated carbon, there could be no direct resonance interaction between X and the carboxyl group. Rates of basic hydrolysis could be defined by the following equation.

Separation of polar, Resonance, and Steric Effects The Taft Equation

Separation of polar, Resonance, and Steric Effects The Taft Equation