Studies on Twisted Magnetic Flux Bundles

Slides:



Advertisements
Similar presentations
The H-alpha radial velocities of an arch filament system in solar emerging flux region Shino Kawahara Rakutou High School KYOTO.
Advertisements

XRT Instrument Capabilities Ed DeLuca, Leon Golub & Jay Bookbinder SAO.
Analysis of a C4.1 flare occurred in a δ spot using SDO and SST data
Estimating the magnetic energy in solar magnetic configurations Stéphane Régnier Reconnection seminar on Thursday 15 December 2005.
Nonlinearity of the force-free parameter over active regions. M.Hagino and T.Sakurai National Astronomical Observatory of Japan, Solar Observatory.
Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
Multi-Wavelength Studies of Flare Activities with Solar-B ASAI Ayumi Kwasan Observatory, Kyoto University Solar-B Science February 4, 2003.
Modeling the Magnetic Field Evolution of the December Eruptive Flare Yuhong Fan High Altitude Observatory, National Center for Atmospheric Research.
High-latitude activity and its relationship to the mid-latitude solar activity. Elena E. Benevolenskaya & J. Todd Hoeksema Stanford University Abstract.
Physics 202: Introduction to Astronomy – Lecture 13 Carsten Denker Physics Department Center for Solar–Terrestrial Research.
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Magnetic Helicity • Magnetic helicity measures
THE FORMATION OF FILAMENT CHANNELS K. Muglach, Y.-M. Wang Naval Research Laboratory.
Changes of Magnetic Structure in 3-D Associated with Major Flares X3.4 flare of 2006 December 13 (J. Jing, T. Wiegelmann, Y. Suematsu M.Kubo, and H. Wang,
Study of magnetic helicity in solar active regions: For a better understanding of solar flares Sung-Hong Park Center for Solar-Terrestrial Research New.
Solar-B Science Objectives - Overview of the Mission - Kazunari Shibata (Kyoto Univ.)
Sung-Hong Park Space Weather Research Laboratory New Jersey Institute of Technology Study of Magnetic Helicity and Its Relationship with Solar Activities:
Direct Evidence of Emergence of a Helical Flux Rope under an Active- Region Prominence Joten Okamoto Kyoto Univ. / NAOJ JSPS Research Fellow Saku Tsuneta,
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
1 Future solar missions (Based on the summary by R.A. Harrison) S. Kamio
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Three Dimensional Visualization of the Solar Corona and study of coronal cavity observed by Yohkoh/SXT and Hinode/XRT J. Okumura, D. Mineyama, H. Watanabe,
Quick changes of photospheric magnetic field during flare-associated surges Leping Li, Huadong Chen, Suli Ma, Yunchun Jiang National Astronomical Observatory/Yunnan.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Fine Structure inside Flare Ribbons and its Temporal Evolution ASAI Ayumi 1, Masuda S. 2, Yokoyama T. 3, Shimojo M. 3, Kurokawa H. 1, Shibata, K. 1, Ishii.
Micro-Flare and High-Speed Down-Flow observed with VTT R. Kano(1), Y. Katsukawa(1), Y. Kitakoshi(2), T. Shimizu(3), S. Tsuneta(1) and V. Martinez Pillet(4)
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
2005/11/086th Solar-B Science Supersonic downflows in the photosphere discovered in sunspot moat regions T. Shimizu (ISAS/JAXA, Japan),
Newark, Wiegelmann et al.: Coronal magnetic fields1 Solar coronal magnetic fields: Source of Space weather Thomas Wiegelmann, Julia Thalmann,
H.N. Wang Key Laboratory of Solar Activity National Astronomical Observatory Chinese Academy of Sciences SDO data for solar activity forecasts.
Helicity Observations by Huairou Vector Magnetograph Mei Zhang National Astronomical Observatory, Chinese Academy of Sciences Plan of the Talk: 1.Huairou.
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
1 The Astrophysical Journal, 601:L195–L198, 2004 February RAPID PENUMBRAL DECAY FOLLOWING THREE X-CLASS SOLAR FLARES H. Wang, 1,2 C. Liu, 1 J.
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
NoRH Observations of Prominence Eruption Masumi Shimojo Nobeyama Solar Radio Observatory NAOJ/NINS 2004/10/28 Nobeyama Symposium SeiSenRyo.
Pre-flare activity of M1.2 flare 김수진 1,2, 문용재 1, 김연한 1, 박영득 1, 김갑성 2 1. Korea Astronomy and Space Science Institute 2. Kyung Hee University.
1 Introduction: Onset of solar flares and coronal mass ejections Yokoyama, T. Dept. Earth & Planetary Science, University of Tokyo Isobe, H. Univ. Tokyo.
The Sun The Sun imaged in white light by the SOHO spacecraft.
ASAI Ayumi Kwasan Observatory, Kyoto University July 12, Evolution of Flare Ribbons and Energy Release.
1 The Astrophysical Journal, 623:L53–L56, 2005 April 10 MAGNETIC FREE ENERGY IN NOAA ACTIVE REGION ON 2003 OCTOBER 29 Thomas R. Metcalf 1,, K. D.
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
Solar seminor: 4 Oct (1)Eruption of a multiple-turn helical magnetic flux tube in a large flare : Evidence for external and i ternal reconnection.
High resolution images obtained with Solar Optical Telescope on Hinode
Evolution of Ha Flare Kernels and Energy Release
Ganghua Lin Huairou Solar Observating Station,NAO,CAS.
1 Yongliang Song & Mei Zhang (National Astronomical Observatory of China) The effect of non-radial magnetic field on measuring helicity transfer rate.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
Anemone Structure of AR NOAA and Related Geo-Effective Flares and CMEs A. Asai 1 ( 浅井 歩 ), T.T. Ishii 2, K. Shibata 2, N. Gopalswamy 3 1: Nobeyama.
High Spatial Resolution Observations of Pores and the Formation of a Rudimentary Penumbra G. Yang, Y.Xu, H.Wangm and C.Denker 2003, ApJ, 597, 1190.
Evolution of Flare Ribbons and Energy Release Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, Hiroki KUROKAWA 1, and Kazunari SHIBATA.
Hiroko Watanabe (Kyoto Univ.)
Evolution of Flare Ribbons and Energy Release Ayumi Asai1,
Phillip Chamberlin Solar Flares (303) University of Colorado
Anemone Structure and Geo-Effective Flares/CMEs
Exploring Large-scale Coronal Magnetic Field Over Extended Longitudes With EUVI EUVI B EIT EUVI A 23-Mar UT Nariaki Nitta, Marc DeRosa, Jean-Pierre.
Introduction to Space Weather
Evolution of Flare Ribbons and Energy Release
Evolution of Flare Ribbons and Energy Release Ayumi Asai (浅井 歩)1,
Evolution of Flare Ribbons and Energy Release
Anemone Structure of AR NOAA and Related Geo-Effective Flares and CMEs
Vector polarimetry with HMI
Scientific Collaboration of NAOC Facilities & Solar-B
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Observations of emerging and submerging regions with ASP and Solar-B
Flare Ribbon Expansion and Energy Release
Evolution of Flare Ribbons and Energy Release
Magnetic Configuration and Non-potentiality of NOAA AR10486
Magnetic connection between the photosphere and the corona
Downflow as a Reconnection Outflow
SIDC Space Weather Briefing
Presentation transcript:

Studies on Twisted Magnetic Flux Bundles by Solar Optical Telescope (SOT) Takako T. ISHII Kwasan Observatory, Kyoto-U.

Contents; ・Our previous studies ・Advantage of Solar-B

Our previous studies We have studied what is the key process to trigger the major solar flares using observational data of the evolution of active regions. Key question: What is the common magnetic field configuration among flare-productive active regions ? We have constructed schematic models of emerging magnetic flux bundles based on sunspot proper motions.

Method Emerging magnetic flux tube Bipolar pair of sunspots photosphere proper motion proper motion Photosphere Chromosphere (H-alpha center)

Data analysis ・Domeless Solar Telescope (DST)  at Hida Observatory, Kyoto-U.  ⇒ H-alpha images by Lyot filter ・TRACE ⇒ White light images and EUV images ・SOHO / MDI  ⇒ Magnetograms and Intensitygrams Evolution of active regions (pair identification, sunspot proper motion) Flare activity (energy storage, trigger)

For several active regions, we found that the emergence of twisted magnetic flux bundles is the key to high productivity of major flares. Ishii et al. (2000) PASJ, 52, 337 ・NOAA 4201 (1983 June) Ishii et al. 2000 ・NOAA 5395 (1989 Mar.) Ishii et al. 1998 ・NOAA 9026 (2000 June) Kurokawa et al. 2002 ・NOAA 9236 (2000 Nov.) Ishii et al. 2002

20 degrees in heliographic coordinate 200,000 km NOAA 9236 (Face-on movie) gray scale: intensitygram contour: magnetogram level: 500 Gauss red: positive blue: negative 20 degrees in heliographic coordinate SOHO / MDI Full disk (magnetogram, intensitygram) 1 pixel = about 2 arcsec TRACE white light MDI high resolution 1 pixel = 0.5 arcsec

NOAA 9236 (Face-on movie) Solar-B / SOT Vector-magnetogram gray scale: white light contour: magnetogram level: 500 Gauss red: positive blue: negative 100 arcsec (70,000 km) TRACE white light MDI high resolution (Longitudinal magnetogram) Resolution : 1.0 arcsec Solar-B / SOT Vector-magnetogram Resolution: 0.2 arcsec

SOT Field of View 1 pixel = 0.08 arcsec Field of View (FOV) ⇒max:    328’’×164’’ ~ 4 K×2 K CCD SOT FOVmax Full disk Sun

NOAA 9236 2000-Nov-24 06:24 UT Full disk Sun

Cadence <Example> SOHO MDI full disk  daily evolution East-limb  West-limb 11 days E 45 deg.  W 45 deg. 7 days ・Magnetograms 15 images / day ( one image / 90 min.) OK. ・Intensitygrams 4 images / day ( one image / 6 hours) a little bit poor.

Attention Trigger of flares: Magnetic fields ・Magnetic shear 200,000 km Attention Trigger of flares: Magnetic fields ・Magnetic shear development ・Helicity injection Sunspots ・Rotational motion of sunspots  (vortex-like motions of satellite spots,  penetration into opposite polarity region,  rotation of magnetic neutral line) Kurokawa et al. (2002) ApJ, 572, 598 NOAA 9026

Summary Subject: Flare energy storage and triggering process. Twists of magnetic flux tubes. Wavelength: White light & Vector magnetogram Field of View: SOT Max (328’’×164’’) Cadence: at least 15 images / day (1 image / 90min.) Duration: at least One week ( E45°~ W45°)