Thick-GEM sampling element for DHCAL: First beam tests & more

Slides:



Advertisements
Similar presentations
TIME 2005: TPC for the ILC 6 th Oct 2005 Matthias Enno Janssen, DESY 1 A Time Projection Chamber for the International Linear Collider R&D Studies Matthias.
Advertisements

Present Status of GEM Detector Development for Position Counter 1.Introduction 2.GEM 3.Readout Board 4.Fabrication Test 5.Large GEM 6.Readout Electronics.
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Digital Hadron Calorimetry using Gas Electron Multipliers Andy White University of Texas at Arlington.
1 Study of the Tail Catcher Muon Tracker (TCMT) Scintillator Strips and Leakage with Simulated Coil Rick Salcido Northern Illinois University For CALICE.
GEM DHCAL Simulation Studies J. Yu* Univ. of Texas at Arlington ALCW, July 15, 2003 Cornell University (*on behalf of the UTA team; S. Habib, V. Kaushik,
Directional Detectors and Digital Calorimeters Ed Norbeck and Yasar Onel University of Iowa For the 25 th Winter Workshop on Nuclear Dynamics Big Sky,
July 2003American Linear Collider Workshop Cornell U. Development of GEM-based Digital Hadron Calorimetry Andy White U.Texas at Arlington (for J.Yu, J.Li,
1/9/2003 UTA-GEM Simulation Report Venkatesh Kaushik 1 Simulation Study of Digital Hadron Calorimeter Using GEM Venkatesh Kaushik* University of Texas.
Detectors for Tomorrow and After Tomorrow… Amos Breskin Radiation Detection Physics Group Weizmann Institute 1 Amos Breskin.
Andy White U.Texas at Arlington (for J.Yu, C.Han, J.Li, D.Jenkins, J.Smith, K.Parmer, A.Nozawa, V.Kaushik) 10/18/04 IEEE/NSS Digital Hadron Calorimetry.
Sept. 24, Status of GEM DHCAL Jae Yu For GEM-TGEM/DHCAL Group Sept. 24, 2010 CALICE Collaboration Meeting Univ. Hassan II, Casablanca Introduction.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
GEM Digital Hadron Calorimetry
1 Status of GEM DHCAL Andy White For GEM-TGEM/DHCAL Group March 21, 2011 ALCPG11 Workshop Univ. of Oregon Introduction 30cmx30cm 2D readout with KPiX chip.
Andy White University of Texas at Arlington For GEM DHCAL Group ESTB Workshop SLAC 2012 Introduction KPiX Readout FTBF Beam Test Setup Beam Test Analysis.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Digital HCAL using GEM J. Yu* Univ. of Texas at Arlington Nov , 2002 NIU/NICADD (*on behalf of the UTA team; A. Brandt, K. De, S. Habib, V. Kaushik,
M. Chefdeville LAPP, Annecy, France. Introduction  Motivations for a Digital hadronic calorimeter Count hits instead of measuring energy deposits Reduce.
Digital HCAL using GEM J. Yu* Univ. of Texas at Arlington, Aug. 26 – 30, 2002 Jeju Island, Korea (*on behalf of the UTA team; A. Brandt, K. De, S. Habib,
LAPP/Demokritos H4 setup Sampling Calorimetry with Resistive Anode Micromegas (SCREAM) Theodoros Geralis NCSR Demokritos RD51 mini week, 8 – 11 December.
Digital Calorimetry using GEM technology Andy White for UTA group (A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee, Jae Yu) CALICE/CERN 09/23/2002.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
UTA GEM DHCAL Simulation Jae Yu * UTA DoE Site Visit Nov. 13, 2003 (*On behalf of the UTA team; A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee,
Development of Digital Hadron Calorimeter Using GEM Shahnoor Habib For HEP Group, UT Arlington Oct. 12, 2002 TSAPS Fall ’02, UT Brownsville Simulation.
Developing Imaging Calorimeters for a SiD-Flavor Lepton Collider Jacob Smith Linear Collider Physics School Ambleside,England 2009.
ILC Calorimetry Test Beam Status Lei Xia ANL HEP.
Digital Calorimetry using GEM technology Andy White for UTA group (A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee, Jae Yu) U.C. Santa Cruz 6/28/2002.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Digital Hadron Calorimetry Using Gas Electron Multiplier Technology CALICE Meeting, NIU March 2005 Andy White (for the GEM-DHCAL group: UTA, U.Washington,
Update on GEM-based Calorimetry for the Linear Collider A.White 1/11/03 (for J.Yu, J.Li, M.Sosebee, S.Habib, V.Kaushik)
Application of Large Scale GEM for Digital Hadron Calorimetry Jae Yu For GEM DHCAL Group June 11, 2011 TIPP 2011 The Goals 30cmx30cm 2D readout with KPiX.
UTA Digital hadron Calorimetry using the GEM concept J.Li, A.White, J.Yu 5/30/02.
A Hadron Calorimeter with Resistive Plate Chambers José Repond Argonne National Laboratory CALOR 2006, Chicago, June 5 – 9, 2006.
Digital Hadron Calorimetry for the International Linear Collider Using Gas Electron Multiplier Technology Andy White University of Texas at Arlington (for.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
Status of GEM DHCAL Jae Yu For GEM DHCAL Group April 25, 2012 KILC Workshop, KNU Introduction KPiX V9 and DCAL Integration FTBF Beam Test Setup Beam Test.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
THGEMs: very recent results towards applications in DHCAL & LXe detector readout Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra &
Energy Reconstruction in the CALICE Fe-AHCal in Analog and Digital Mode Fe-AHCal testbeam CERN 2007 Coralie Neubüser CALICE Collaboration meeting Argonne,
THGEM Marco Cortesi Weizmann Institute of Science PANIC08 Recent Advances in THGEM Detectors M. Cortesi, A. Breskin, R. Chechik, R. Alon, J. Miyamoto Weizmann.
Andy White University of Texas at Arlington For GEM DHCAL Group CALOR 2012 Introduction KPiX V9 and DCAL Integration FTBF Beam Test Setup Beam Test Analysis.
CALICE, Shinshu, March Update on Micromegas TB analysis Linear Collider group, LAPP, Annecy CALICE collaboration meeting 5-7 March 2012, Shinshu,
Large THGEM sampling elements for DHCAL status report
CEPC 数字强子量能器读出电子学预研进展
Saikat Biswas, A. Abuhoza, U. Frankenfeld, C. Garabatos,
MPGD 2015 Concise Summary Amos Breskin.
SiD Calorimeter R&D Collaboration
CMS muon detectors and muon system performance
THGEM: Introduction to discussion on UV-detector parameters for RICH
Digital Calorimetry using GEM technology Andy White for UTA group
Status of GEM DHCAL Andy White RD51 Collaboration Meeting CERN
Semi-Digital Hadronic CALorimeter
Tao Hu, Jianbei Liu, Haijun Yang, Boxiang Yu For the CEPC-Calo Group
Calorimetry for a CLIC experiment
GEM-based Digital Hadron Calorimetry for SiD
   Calorimetry et al.    SUMMARY 12 contributions Tile HCAL
A Silicon-Tungsten ECal for the SiD Concept
GEM-based Digital Hadron Calorimetry for SiD
Rick Salcido Northern Illinois University For CALICE Collaboration
GEM DHCAL Status and Plans
Pre-installation Tests of the LHCb Muon Chambers
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
Production of a 3D-Printed THGEM Board
LC Calorimeter Testbeam Requirements
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

Thick-GEM sampling element for DHCAL: First beam tests & more Breskin, R. Chechik, M. Cortesi, L. Arazi, M. Pitt Weizmann Institute of Science – Israel (RD51) White, S. Park, J. Yu UTA – USA (RD51) J. Veloso, H. Natal da Luz, C. Azevedo, D. Cavita Aveiro & Coimbra Univ. – Portugal (RD51) M. Breidenbach, D. Freytag, G. Haller, R. Herbst SLAC - USA THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Digital Hadron Calorimetry for ILC ILC: Separate W,Z boson masses on event-by event basis 60%/E Best JET resolution with traditional calorimetry Precision studies of new physics Need 30%/E Generally need σ/Ejet ~3-4% Digital calorimetry associate “hits” with charged tracks, remove hits, measure neutrals in calorimeter using hits vs. energy Particle Flow Algorithms now achieve the required energy resolution! Requires thin, efficient, highly segmented, compact, robust medium, (competitors: D-GEM, Micromegas, RPC, THGEM) THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

New concept for DHCAL: THGEM A. White et al UTA HCal D-GEMs @ UTA: 1m2 in process General detector scheme ~6.5mm 2 sampling layers (out of 40) with THGEM-based elements Sampling jets + advanced pattern recognition algorithms  Very high-precision jet energy measurement. Simulated event w 2 hadronic jets Reconstructed jet: Simulated energy resolution σ/Ejet ~ 3% (CALICE) THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

KPiX Analog Readout for GEM & THGEM DHCAL Dynamic gain select (GEM/Si) Breidenbach et al. SLAC 13 bit A/D DHCAL anode pad Storage until end of train. Pipeline depth presently is 4 Leakage current subtraction New version equipped with self and ext. trigger Event triggered by the ILC clock calibration 1024 channel 13 bit ADC chip Developed for Si/W ECAL@ SLAC 4 THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010 4

D-GEM / 64 anode-pads + KPiX Fe55 Source Signal 30x30 cm D-THGEM/KPiX Top side A. White et al UTA THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

D-GEM / kPiX with Cosmics - with Ext. Trigger ~18 fC Noise spectrum 6 THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Thick Gas Electron Multiplier (THGEM) ~ 10-fold expanded GEM drilled THGEM 1e- in etched E 104- 105 e-s out Thickness 0.5-1mm Double-THGEM: 10-100 higher gains THGEM advantage for DHCAL: SIMPLE, ROBUST, LARGE-AREA Cheap: Printed-circuit technology Digital counting gain fluctuations not important Robust, if discharge no damage Effective single-electron detection Few-ns RMS time resolution Sub-mm position resolution >MHz/mm2 rate capability Broad pressure range: 1mbar - few bar THGEM Recent review NIM A 598 (2009) 107 THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Gain: THGEM in Ne-mixtures Gain: single UV-photons 2009 JINST 4 P08001 e- Segmented readout electrode THGEM MIP 10x10 cm2 THGEM Gain: single UV-photons 10x10cm Double-THGEM double-THGEM Single-THGEM High gain in Ne mixtures 2-THGEM: higher gains/lower HV But: low ionization (ntot~40 e/MIP) Ne/5%CH4 THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010 Cortesi Marco 8

CERN test-beam detector 4-pads electrode with Q-pamp/MCA 64 pads electrode with KPiX behind Installation at CERN THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Muons w Double-THGEM KPIX or Q-preamp/MCA ~12 fC 0.4mm MIP e- 0.4mm 2-THGEM BEAM TESTS with Q-preamp/MCA 3.4 mm drift Here we had: 0.5mm holes / 1mm space 0.4mm MIP Double-THGEM, Ne/5%CH4; Average gain ~5000 e- 2-THGEM BEAM TESTS with KPIX 1x1 cm pad electrode ~12 fC THGEM 3.4 mm drift 0.4mm KPIX or Q-preamp/MCA August 2010 Double-THGEM, Ne/5%CH4; Average gain ~5300 THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Double-THGEM & KPiX Muon beam profile THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Muons with double-THGEM gain 3000 gain 1200 Double-THGEMs in Ne/5%CH4. Landau distributions recorded with an MCA. Thickness: 0.4mm Drift gap: 3.4mm THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Single-THGEM, 10mm drift gap, muons Single-THGEM with muons Landau distribution at a gain of 800. Thickness: 0.8mm Drift-gap: 10mm THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Single-THGEM with muons: efficiency 10x10 cm Thicknes: 0.4 mm Particles: muons Gas: Ne/5%CH4 Drift gap: 3 mm Charge preamp/MCA 0.5 cm2 trigger e~96% THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Single-THGEM/3mm drift PIONS MUONS ~3 fC Measured very low discharge rates even with pions @ rates >>ILC THGEM: 0.4mm Gain: 1200-1400 THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

THGEM for DHCAL: next… October 2010: run at CERN with muons/pions Investigations with 1-THGEM & 2-THGEM with KPIX Gain & Efficiency Crosstalk between pads Discharge rates with m/p (continuation study) With SLAC: improving KPIX protection 30x30 cm THGEMs OCT RUN: New multiplier geometries & operation modes  well, gain in ind gap, resistive film… Other gases (Ne/CF4?) THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Compact WELL-THGEM UV Gas: Ne/CH4 (%CH4 ~ 10%) UV WELL: lower HV (similar to: Well-Counter of Bellazzini & of Alfonsi et al. CRETE 09) Present goal: Reduce to minimum multiplier thickness Gain with single-photons UV THGEM THGEM Single-THGEM 0.8mm Gas: Ne/CH4 (%CH4 ~ 10%) UV Gain with single-photons WELL-THGEM WELL-THGEM THGEM Single-THGEM 0.4mm WELL: lower HV 0.8mm  higher gain THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

RESISTIVE-WELL-THGEM Drift Thin insulator Advantages: No induction gap Ground on both external electrodes Spark-protection of electronics Single- or double- THGEM ground + ++ ground Resistive film 6-7mm UNDER INVESTIGATIONS @ Weizmann THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

Well: Charge pulses on pad 55Fe WELL-THGEM ~SAME PULSE SHAPE With/without resistive film THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

THGEM: Induction gap configuration: effect of adding a resistive layer (1.3 MΩ/□) Without multiplication in the induction gap With multiplication in the induction gap 55Fe THGEM With/without resistive film THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010

THGEM Charge pulses WELL, THGEM and with multiplication in induction gap 55Fe THGEM 55Fe THGEM Eind 3.5 kV/cm THGEM 2.5kV/cm 1kV/cm well 55Fe WELL-THGEM Gain in induction gap: Broader pulse (IONS!) Might be beneficial for KPiX THGEM DHCAL - A. Breskin et al RD51 Bari Oct 2010