Volume 141, Issue 2, Pages e4 (August 2011)

Slides:



Advertisements
Similar presentations
Volume 136, Issue 4, Pages (April 2009)
Advertisements

Volume 136, Issue 5, Pages e13 (May 2009)
Volume 153, Issue 4, Pages (October 2017)
Volume 153, Issue 4, Pages (October 2017)
Volume 139, Issue 3, Pages e8 (September 2010)
Volume 142, Issue 4, Pages (April 2012)
Volume 135, Issue 1, Pages e3 (July 2008)
Volume 129, Issue 5, Pages (November 2005)
Pancreatic Development and Disease
Volume 133, Issue 6, Pages (December 2007)
Volume 141, Issue 6, Pages e7 (December 2011)
Volume 141, Issue 4, Pages e5 (October 2011)
Mesenchymal Stem Cells Promote Formation of Colorectal Tumors in Mice
Volume 132, Issue 3, Pages (March 2007)
Volume 136, Issue 3, Pages e4 (March 2009)
Volume 137, Issue 2, Pages e2 (August 2009)
Volume 135, Issue 2, Pages e3 (August 2008)
Volume 132, Issue 3, Pages (March 2007)
Volume 143, Issue 2, Pages (August 2012)
Volume 138, Issue 3, Pages e2 (March 2010)
Volume 141, Issue 4, Pages e5 (October 2011)
Volume 135, Issue 4, Pages e5 (October 2008)
Volume 141, Issue 4, Pages (October 2011)
Aryl Hydrocarbon Receptor Regulates Pancreatic IL-22 Production and Protects Mice From Acute Pancreatitis  Jing Xue, David T.C. Nguyen, Aida Habtezion 
Volume 132, Issue 2, Pages (February 2007)
This Month in Gastroenterology
Volume 134, Issue 2, Pages (February 2008)
David A. Cano, Shigeki Sekine, Matthias Hebrok  Gastroenterology 
Volume 136, Issue 5, Pages e6 (May 2009)
Volume 139, Issue 3, Pages (September 2010)
Ilse Rooman, Jessy Lardon, Daisy Flamez, Frans Schuit, Luc Bouwens 
Volume 146, Issue 3, Pages e3 (March 2014)
Volume 139, Issue 6, Pages e2 (December 2010)
Volume 141, Issue 2, Pages e4 (August 2011)
Volume 148, Issue 3, Pages (March 2015)
Volume 138, Issue 7, Pages (June 2010)
Volume 16, Issue 3, Pages (March 2009)
Moorthy P. Ponnusamy, Surinder K. Batra  Gastroenterology 
Volume 128, Issue 3, Pages (March 2005)
Volume 139, Issue 3, Pages e8 (September 2010)
Mesenchymal Stem Cells Promote Formation of Colorectal Tumors in Mice
Volume 136, Issue 2, Pages (February 2009)
Molecular Therapy - Nucleic Acids
Volume 135, Issue 1, Pages e3 (July 2008)
Volume 127, Issue 1, Pages (July 2004)
Volume 142, Issue 4, Pages (April 2012)
Volume 140, Issue 4, Pages e1 (April 2011)
Volume 145, Issue 4, Pages e10 (October 2013)
Volume 138, Issue 5, Pages e3 (May 2010)
Volume 153, Issue 4, Pages e4 (October 2017)
Volume 141, Issue 4, Pages e6 (October 2011)
Volume 144, Issue 7, Pages e1 (June 2013)
Volume 134, Issue 2, Pages e3 (February 2008)
Covering the Cover Gastroenterology
Volume 141, Issue 5, Pages e2 (November 2011)
Volume 134, Issue 3, Pages (March 2008)
Maria L. Golson, Kathleen M. Loomes, Rebecca Oakey, Klaus H. Kaestner 
Qinglan Zhao, Yi Wei, Stephen J. Pandol, Lingyin Li, Aida Habtezion 
Volume 136, Issue 4, Pages (April 2009)
Volume 137, Issue 1, Pages e5 (July 2009)
Volume 131, Issue 6, Pages (December 2006)
Volume 18, Issue 6, Pages (June 2010)
Molecular Therapy - Methods & Clinical Development
Volume 139, Issue 1, Pages e2 (July 2010)
Ling Zheng, Terrence E. Riehl, William F. Stenson  Gastroenterology 
Volume 138, Issue 4, Pages (April 2010)
Volume 144, Issue 1, Pages (January 2013)
Volume 139, Issue 2, Pages (August 2010)
Molecular Therapy - Nucleic Acids
Suppression of Ptf1a Activity Induces Acinar-to-Endocrine Conversion
Presentation transcript:

Volume 141, Issue 2, Pages 731-741.e4 (August 2011) Lineage Tracing Evidence for Transdifferentiation of Acinar to Duct Cells and Plasticity of Human Pancreas  Isabelle Houbracken, Evelien de Waele, Jessy Lardon, Zhidong Ling, Harry Heimberg, Ilse Rooman, Luc Bouwens  Gastroenterology  Volume 141, Issue 2, Pages 731-741.e4 (August 2011) DOI: 10.1053/j.gastro.2011.04.050 Copyright © 2011 AGA Institute Terms and Conditions

Figure 1 Immunofluorescence characterization of the human exocrine cells during culture. (A–C) Expression of the ductal marker CK19 (red) and the acinar marker chymotrypsin (green) in the freshly isolated exocrine fraction (A), at day 4 (B), and at day 7 in culture (C). Arrows and inset indicate cells coexpressing CK19 and chymotrypsin at day 4. Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions

Figure 2 Expression of duct cell markers at the start of the culture. (A–E) The different ductal markers are coexpressed in the freshly isolated exocrine cells: (A) CK19 (red)/HNF1B (green), (B) CK19 (red)/SOX9 (green), (C) CD133 (red)/SOX9 (green), (D) CAII (red)/SOX9 (green). (E) CFTR (green) is expressed in chymotrypsin (red)-negative cells. Blue represents nuclear staining with 4′,6-diamidino-2-phenylindole (DAPI). Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions

Figure 3 Nongenetic lineage tracing of acinar cells with UEA-1 lectin. (A and B) Immunofluorescent staining of FITC-conjugated UEA-1–labeled cells with (A) chymotrypsin and (B) CK19 immediately after the labeling period of 3 hours. Blue represents nuclear staining with DAPI. (C and D) Fraction of UEA-1–labeled chymotrypsin-positive and CK19-positive cells. In red is the fraction of (C) UEA-1–labeled chymotrypsin-positive (n = 4) or (D) UEA-1–labeled CK19-positive (n = 5) cells indicated for each time point in culture, and in green is the fraction of (C) UEA-1–labeled chymotrypsin-positive or (D) UEA-1–labeled CK19-positive cells. During culture, the percentage of UEA-1–labeled chymotrypsin-positive cells decreases, whereas the fraction of UEA-1–labeled CK19-positive cells increases. Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions

Figure 4 Expression of duct cell markers at the end of culture in UEA-1–labeled cells. (A–F) After a culture period of 7 days, the FITC-conjugated UEA-1–labeled cells (green) express (A) CK19, (B) CAII, (C) CD133, (D) SOX9, (E) HNF1B, and (F) CFTR. These ductal markers are stained in red. Blue represents nuclear staining with DAPI. Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions

Figure 5 Genetic lineage tracing of human acinar cells. (A) Schematic of the 2 adenoviral vectors. (B and C) Human exocrine cells on day 2, after transduction with both Ad-CMV-LSL-EGFP and Ad-Amy-Cre. The immunocytochemical staining for (B) chymotrypsin (red) or (C) CK19 (red) and EGFP (green) indicate stringent control of the EGFP expression in acinar cells. (D and E) Monolayer culture of human exocrine cells on day 7, after transduction with both Ad-CMV-LSL-EGFP and Ad-Amy-Cre. The immunocytochemical staining for (D) chymotrypsin (red) or (E) CK19 (red) and EGFP (green) indicate acinoductal transdifferentiation. Blue represents nuclear staining with DAPI. Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions

Figure 6 Analysis of the process by which acinar cells give rise to duct cells. (A) Quantitative reverse-transcription polymerase chain reaction analysis of the expression of a ductal marker (CK19) and acinar digestive enzymes (amylase, lipase, and chymotrypsin) in response to treatment with UO126, compound E, or EGF. Results are normalized to cycloA and to the control condition on day 7 (untreated, ctrl). Note the extremely high expression level of acinar enzymes on day 1 compared with day 7. (B) Quantification of the percentage of UEA-1–labeled CK19-positive cells on CK19-positive cells and UEA-1–labeled chymotrypsin-positive cells on total cells on day 7 in cultures treated with UO126, compound E, epidermal growth factor, or untreated (ctrl). (C) Quantitative reverse-transcription polymerase chain reaction analysis of the expression of pancreatic progenitor markers NKX6.1, PDX1, PTF1A, NOTCH1, and HES1 during culture (*P < .05). Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions

Supplementary Figure 1 Validation and optimization of the genetic tracing system. (A–C) AR42J cells were transfected with (A) pCMV-EGFP, (B) pShuttle-CMV-Lox-STOP-Lox-EGFP (CMV-LSL-EGFP) only, or (C) CMV-LSL-EGFP and pShuttle-Amylase-nlsCre (Amy-Cre) to evaluate the functionality of the adenoviral tracing system. Cells transfected with both Cre-lox constructs expressed EGFP (green), contrary to cells transfected with CMV-LSL-EGFP only. (D) Percentage of EGFP-positive cells on total cells on day 7 of monolayer culture of human exocrine fraction, transduced with Ad-CMV-EGFP with increasing MOIs on day 1. Gastroenterology 2011 141, 731-741.e4DOI: (10.1053/j.gastro.2011.04.050) Copyright © 2011 AGA Institute Terms and Conditions