Mobile Radio Propagation - Small-Scale Fading and Multipath

Slides:



Advertisements
Similar presentations
OFDM Transmission over Wideband Channel
Advertisements

Data Communication lecture10
Quiz Determine the minimum number of shift register stages required to create a maximal length PN sequence which has a repetition time greater than 10.
1 Small-scale Mobile radio propagation Small-scale Mobile radio propagation l Small scale propagation implies signal quality in a short distance or time.
Propagation Characteristics
Physical Layer: Channel models and digital modulation techniques
1 Mobile Communication Systems 1 Prof. Carlo Regazzoni Prof. Fabio Lavagetto.
Multipath fading and reflections The signal takes many paths to the destination. The propagation delay along each path is different. How many meters difference.
Mobile Radio Propagation - Small-Scale Fading and Multipath
Doppler shifts: Effect on Communication systems Kartik Natarajan.
Wireless and Mobile Communication Systems
Basics of Small Scale Fading: Towards choice of PHY Narayan Mandayam.
ECE 4730: Lecture #10 1 MRC Parameters  How do we characterize a time-varying MRC?  Statistical analyses must be used  Four Key Characteristics of a.
Wireless Communication Channels: Small-Scale Fading
EEE440 Modern Communication Systems Wireless and Mobile Communications.
Chapter 4 Mobile Radio Propagation: Small-Scale Fading and Multipath
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
Lecture 3. 2 Outline Signal fluctuations – fading Interference model – detection of signals Link model.
ECE 480 Wireless Systems Lecture 14 Problem Session 26 Apr 2006.
Chapter 5 – Mobile Radio Propagation: Small-Scale Fading and Multipath
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 3 Jan. 22 nd, 2014.
EELE 5490, Fall, 2009 Wireless Communications Ali S. Afana Department of Electrical Engineering Class 5 Dec. 4 th, 2009.
The Wireless Channel Lecture 3.
EE424 Communication Systems
Abdul-Aziz .M Al-Yami Khurram Masood
EE 6331, Spring, 2009 Advanced Telecommunication Zhu Han Department of Electrical and Computer Engineering Class 7 Feb. 10 th, 2009.
Performance analysis of channel estimation and adaptive equalization in slow fading channel Chen Zhifeng Electrical and Computer Engineering University.
1 What is small scale fading? Small scale fading is used to describe the rapid fluctuation of the amplitude, phases, or multipath delays of a radio signal.
Adaphed from Rappaport’s Chapter 5
Statistical Description of Multipath Fading
TI Cellular Mobile Communication Systems Lecture 3 Engr. Shahryar Saleem Assistant Professor Department of Telecom Engineering University of Engineering.
1 Orthogonal Frequency- Division Multiplexing (OFDM) Used in DSL, WLAN, DAB, WIMAX, 4G.
ECEN 621, Prof. Xi Zhang ECEN “ Mobile Wireless Networking ” Course Materials: Papers, Reference Texts: Bertsekas/Gallager, Stuber, Stallings,
Fading in Wireless Communications Yan Fei. Contents  Concepts  Cause of Fading  Fading Types  Fading Models.
Diana B. Llacza Sosaya Digital Communications Chosun University
1 EMLAB EM wave propagation. 2 EMLAB Impulse response Time Radio Propagation : physical model 안테나에서 나온 신호는 지형지물과 반사, 투과, 산란을 거치면서 다양한 진폭과, 시간 지연을 갖는 신호들로.
Signal Propagation Basics
EEE 441 Wireless And Mobile Communications
Small-Scale Fading Prof. Michael Tsai 2016/04/15.
الخبو صغير المقياس أو(المدى)
Shadowing.
Fading channel.
1. Introduction.
Doppler shifts: Effect on Communication systems
PROPAGATION OF RADIO WAVES
Basics of Small Scale Fading: Towards choice of PHY
Channel Model Considerations for P802.11af
Signal Propagation Basics
CSE 5345 – Fundamentals of Wireless Networks
Advanced Wireless Networks
Wireless Communications Principles and Practice 2nd Edition T. S
2: The Wireless Channel Fundamentals of Wireless Communication, Tse&Viswanath Fundamentals of Wireless Communication David Tse University of California,
Report on Channel Model
UNIT I – Wireless channels
Fundamentals of Cellular and Wireless Networks
Cellular and Wireless Networks Common Mobile Modulation Techniques
Characterizations and Modeling of the Wireless Channel
CSE 5345 – Fundamentals of Wireless Networks
Mobile Radio Environment – Propagation Phenomena
Fading multipath radio channels
Wireless Communications Principles and Practice 2nd Edition T. S
CSE 4215/5431: Mobile Communications Winter 2011
Chen Zhifeng Electrical and Computer Engineering University of Florida
Probability of Error with Fading
Radio Propagation Review
MITP 413: Wireless Technologies Week 3
EE359 – Lecture 7 Outline Announcements: Multipath Intensity Profile
On the Design of RAKE Receivers with Non-uniform Tap Spacing
MITP 413: Wireless Technologies Week 3
COS 463: Wireless Networks Lecture 14 Kyle Jamieson
Presentation transcript:

Mobile Radio Propagation - Small-Scale Fading and Multipath

Parameters of Mobile Multipath Channels Time Dispersion Parameters Grossly quantifies the multipath channel Determined from Power Delay Profile Parameters include Mean Access Delay RMS Delay Spread Excess Delay Spread (X dB) Coherence Bandwidth Doppler Spread and Coherence Time

Measuring PDPs Power Delay Profiles Are measured by channel sounding techniques Plots of relative received power as a function of excess delay They are found by averaging intantenous power delay measurements over a local area Local area: no greater than 6m outdoor Local area: no greater than 2m indoor Samples taken at l/4 meters approximately For 450MHz – 6 GHz frequency range.

Timer Dispersion Parameters Determined from a power delay profile. Mean excess delay( ): Rms delay spread (st):

Timer Dispersion Parameters Maximum Excess Delay (X dB): Defined as the time delay value after which the multipath energy falls to X dB below the maximum multipath energy (not necesarily belonging to the first arriving component). It is also called excess delay spread.

RMS Delay Spread

PDP Outdoor

PDP Indoor

Noise Threshold The values of time dispersion parameters also depend on the noise threshold (the level of power below which the signal is considered as noise). If noise threshold is set too low, then the noise will be processed as multipath and thus causing the parameters to be higher.

Coherence Bandwidth (BC) Range of frequencies over which the channel can be considered flat (i.e. channel passes all spectral components with equal gain and linear phase). It is a definition that depends on RMS Delay Spread. Two sinusoids with frequency separation greater than Bc are affected quite differently by the channel. f1 Receiver f2 Multipath Channel Frequency Separation: |f1-f2|

Coherence Bandwidth Frequency correlation between two sinusoids: 0 <= Cr1, r2 <= 1. If we define Coherence Bandwidth (BC) as the range of frequencies over which the frequency correlation is above 0.9, then s is rms delay spread. If we define Coherence Bandwidth as the range of frequencies over which the frequency correlation is above 0.5, then This is called 50% coherence bandwidth.

Coherence Bandwidth Example: For a multipath channel, s is given as 1.37ms. The 50% coherence bandwidth is given as: 1/5s = 146kHz. This means that, for a good transmission from a transmitter to a receiver, the range of transmission frequency (channel bandwidth) should not exceed 146kHz, so that all frequencies in this band experience the same channel characteristics. Equalizers are needed in order to use transmission frequencies that are separated larger than this value. This coherence bandwidth is enough for an AMPS channel (30kHz band needed for a channel), but is not enough for a GSM channel (200kHz needed per channel).

Coherence Time Delay spread and Coherence bandwidth describe the time dispersive nature of the channel in a local area. They don’t offer information about the time varying nature of the channel caused by relative motion of transmitter and receiver. Doppler Spread and Coherence time are parameters which describe the time varying nature of the channel in a small-scale region.

Doppler Spread Measure of spectral broadening caused by motion We know how to compute Doppler shift: fd Doppler spread, BD, is defined as the maximum Doppler shift: fm = v/l If the baseband signal bandwidth is much greater than BD then effect of Doppler spread is negligible at the receiver.

Coherence Time Coherence time is the time duration over which the channel impulse response is essentially invariant. If the symbol period of the baseband signal (reciprocal of the baseband signal bandwidth) is greater the coherence time, than the signal will distort, since channel will change during the transmission of the signal . TS Coherence time (TC) is defined as: TC f2 f1 Dt=t2 - t1 t1 t2

Coherence Time Coherence time is also defined as: Coherence time definition implies that two signals arriving with a time separation greater than TC are affected differently by the channel.

Types of Small-scale Fading

Flat Fading Occurs when the amplitude of the received signal changes with time For example according to Rayleigh Distribution Occurs when symbol period of the transmitted signal is much larger than the Delay Spread of the channel Bandwidth of the applied signal is narrow. May cause deep fades. Increase the transmit power to combat this situation.

Flat Fading h(t,t) s(t) r(t) t << TS TS t TS+t Occurs when: TS t TS+t Occurs when: BS << BC and TS >> st BC: Coherence bandwidth BS: Signal bandwidth TS: Symbol period st: Delay Spread

Frequency Selective Fading Occurs when channel multipath delay spread is greater than the symbol period. Symbols face time dispersion Channel induces Intersymbol Interference (ISI) Bandwidth of the signal s(t) is wider than the channel impulse response.

Frequency Selective Fading h(t,t) s(t) r(t) t >> TS TS t TS TS+t Causes distortion of the received baseband signal Causes Inter-Symbol Interference (ISI) Occurs when: BS > BC and TS < st As a rule of thumb: TS < st

Fast Fading Due to Doppler Spread Rate of change of the channel characteristics is larger than the Rate of change of the transmitted signal The channel changes during a symbol period. The channel changes because of receiver motion. Coherence time of the channel is smaller than the symbol period of the transmitter signal Occurs when: BS < BD and TS > TC BS: Bandwidth of the signal BD: Doppler Spread TS: Symbol Period TC: Coherence Bandwidth

Slow Fading Due to Doppler Spread Rate of change of the channel characteristics is much smaller than the Rate of change of the transmitted signal Occurs when: BS >> BD and TS << TC BS: Bandwidth of the signal BD: Doppler Spread TS: Symbol Period TC: Coherence Bandwidth

Different Types of Fading TS Flat Fast Fading Flat Slow Fading Symbol Period of Transmitting Signal st Frequency Selective Slow Fading Frequency Selective Fast Fading TC TS Transmitted Symbol Period With Respect To SYMBOL PERIOD