23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.

Slides:



Advertisements
Similar presentations
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Advertisements

Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
Adnan Doyuran a, Joel England a, Chan Joshi b, Pietro Musumeci a, James Rosenzweig a, Sergei Tochitsky b, Gil Travish a, Oliver Williams a a UCLA/Particle.
0 Relativistic induced transparency and laser propagation in an overdense plasma Su-Ming Weng Theoretical Quantum Electronics (TQE), Technische Universität.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
SENIGALLIA-COULOMB09 1 Protons Acceleration with Laser: influence of pulse duration M. Carrié and E. Lefebvre CEA, DAM, DIF, Arpajon, France A. Flacco.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
西湖国际聚变理论与模拟研讨会 西湖国际聚变理论与模拟研讨会 M. Y. Yu 郁明阳 Institute for Fusion Theory and Simulation Zhejiang University Hangzhou
Charged-particle acceleration in PW laser-plasma interaction
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
SPACE CHARGE EFFECTS IN PHOTO-INJECTORS Massimo Ferrario INFN-LNF Madison, June 28 - July 2.
Physics of fusion power Lecture 11: Diagnostics / heating.
Beamline Design Issues D. R. Welch and D. V. Rose Mission Research Corporation W. M. Sharp and S. S. Yu Lawrence Berkeley National Laboratory Presented.
This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under.
Simulations of Neutralized Drift Compression D. R. Welch, D. V. Rose Mission Research Corporation Albuquerque, NM S. S. Yu Lawrence Berkeley National.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Chapter 33 Electromagnetic Waves
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
The speed of light is a constant because the electric and magnetic fields support each other. If the speed of light was not constant energy would not be.
Laser acceleration of electrons and ions: principles, issues, and applications Alexander Lobko Institute for Nuclear Problems, BSU Minsk Belarus.
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Chapter 9 Electromagnetic Waves. 9.2 ELECTROMAGNETIC WAVES.
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
1 Chapter 3 Electromagnetic Theory, Photons and Light September 5,8 Electromagnetic waves 3.1 Basic laws of electromagnetic theory Lights are electromagnetic.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
1 Sensitivity of coupled laser- accelerated ion beams into conventional structures P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L.Palumbo, C. Ronsivalle.
Free Electron Lasers (I)
Chapter 4 Electromagnetic Waves. 1. Introduction: Maxwell’s equations  Electricity and magnetism were originally thought to be unrelated  in 1865, James.
Ulsan National Institute of Science and Technology Toward a World-Leading University Y.K KIM.
Chapter 33 Electromagnetic Waves. 33.2: Maxwell’s Rainbow: As the figure shows, we now know a wide spectrum (or range) of electromagnetic waves: Maxwell’s.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Lecture 20 Electromagnetic Waves Nature of Light
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Impedance Matching – can it tell us anything about fast electron transport? (or Why undergrads need to learn electronics!) Roger Evans Imperial College.
Physics of fusion power Lecture 12: Diagnostics / heating.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Warp LBNL Warp suite of simulation codes: developed to study high current ion beams (heavy-ion driven inertial confinement fusion). High.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
Trident Laser Facility
Topic Report Laser-plasma simulation code: MEDUSA Student: Yi-Ping Lai Advisor: Sheng-Lung Huang Date:2012/3/8.
Laser target interactions, and space/solar physics simulation experiments (Seed funding project) Laser-target: Boris Breizman, Alex Arefiev, Mykhailo Formyts'kyi.
6 July 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Sabrina Appel | 1 Micro bunch evolution and „turbulent beams“
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Production of coherent X-rays with a free electron laser based on optical wiggler A.Bacci, M.Ferrario*, C. Maroli, V.Petrillo, L.Serafini Università e.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
EE231 Introduction to Optics: Basic EM Andrea Fratalocchi ( slide 1 EE 231 Introduction to Optics Review of basic EM concepts Andrea.
Electromagnetic Waves
New concept of light ion acceleration from low-density target
Electromagnetic Waves
Simulation of laser ion-acceleration and transport
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
The 2nd European Advanced Accelerator Concepts Workshop
The LIGHT project Status of the LIGHT experiments HICforFAIR PhysicsDay: Accelerator July 5th 2012 GSI Helmholtzcenter for Heavy Ion Research Abel Blazevic.
8-10 June Institut Henri Poincaré, Paris, France
Studies of the energy transfer
Review of basic EM concepts
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
Dana Tovey, Sergei Tochitsky, Eric Welch, Chan Joshi
Review of basic EM concepts
Accelerator Physics Synchrotron Radiation
Radar Detection of Lightning
Presentation transcript:

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration and transport of intense ion beams Zsolt Lécz, Vladimir Kornilov, Oliver Boine-Frankenheim Beam physics for FAIR Bastenhaus, 6 July 2010

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 2 History of lasers PHELIX

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 3 Usual experimental setup

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 4 PHELIX (Petawatt High Energy Laser for Ion eXperiments ), GSI Target Solenoid RCF Stack e-spectrometer 80 cm Thomson parabola

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 5 Why do we do it? Applications ▪Advantages of ion acceleration: -Table-top size, very high acceleration gradient, high energy 10…100 MeV ▪Outstanding, unique features of the ion beam: -Small transverse emittance (1e-2…1e-1 mm*mrad) -> high laminarity and focusability -Increasing the energy the opening angle is decreasing, due to the decreasing source size - High intensity (current) : 1e13-1e18 ions (1e12 could be collimated) ▪Possible applications: -Nuclear researches -The beams can be used as tools in basic plasma diagnostic research -Injection devices into conventional, large accelerators -Ion therapy for tumor treatments -Inertial fusion (energy research)

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 6 PHELIX Experiment, TW laser beam Pulse duration 700 fs 12x17 micrometer spot size Laser intensity:

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 7 Another experiment Photo-Medical Research Centre, Japan Laser intensity

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 8 What is the laser acceleration? Expanding neutral plasma

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 9 TNSA (Target Normal Sheath Acceleration)

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 10 X(micrometer) TNSA Ponderomotive pressure Proton acceleration Front sideRear side Target 14…95 fs

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 11 Density modulation, electric field Debye sheath

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 12 Typical energy spectrums electrons Cut-off energy of protons t=40 fs !

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 13 Energy absorption ▪The energy of laser pulse can be converted to the hot electron energy through many processes: Resonant absorption, vacuum heating, different skin effects, ponderomotive absorption – high intensity and normal incidence Poynting vector history Power(W) Reflected wave

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 14 Motion of electrons in the laser field Equation of motion in a planar wave: Motion in a non-uniform wave: Don’t gain energy! Exists a gradient in x direction ! gradE X

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 15 Ponderomotive force The laser intensity becomes relativistic when the dimensionless electric field amplitude: a>1 The frequency of the oscillating part of ponderomotive force is twice the laser frequency! Relativistic ponderomotive potential: Kinetic energy:

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 16 ASE light preceding the main pulse ASE=Amplified Spontaneous Emission

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 17 Plasma expansion model Linear dependence of the front-plasma scale length on the pulse-delay.

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 18 Absorption dependence on the scale length On the resonant surface is generated higher harmonic of the laser, which can further heat the plasma. The optimal scale length:(skin depth)

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 19 OOPic Pro, Tech-X Corporation ▪Particle in Cell code, EM field solver, fully relativistic ▪Useful interactive visual diagnostics ▪Easy to write the input file, but no debugging ▪Data of any physical quantity can be dumped ▪Almost any type of boundaries can be applied ▪Used post-processing software: Matlab 9, IDL 6.4

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 20 Simulation parameters ▪Debye length is fixed: 4 nm (initial) ▪Grid size is half of the Debye length ▪In x direction the space is 8-9 micrometer long, in y direction only 4 cells ▪Quasi one-dimensional ▪Courant criterion: ▪The number of macroparticles : 30000, ▪Laser intensity: 1e18…1e20 W/cm^2 ▪Wavelength : 1 micrometer ▪In the calculation of critical density is included the time averaged gamma factor The initial electron temperature increases with the laser intensity

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 21 Simulation result n=4*nc I=10^19 W/cm^2 Te=1keV Ti=0.8keV Pulse Length= 40 fs

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 22 Pulse duration Constant! The dimensionless electric field amplitude varied: 4.66 – 1.47

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 23 Conclusions, next steps ▪The OOPic Pro 2.0 is a good mean for analyzing the laser acceleration processes ▪The hot electron generation and energy absorption in case of normal incidence of intense laser pulses in 1 dimension is well understood ▪The parallelized running of the program is needed in order to increase the precision and speed of the simulations and to extend the simulation space ▪2D simulations are planed with different incidence angle ▪The aim of the work is to provide spatial and energy distribution for the ions (and electrons), which can be used in other simulations (transport, collimation)

The End

23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 25 Bibliography ▪Nonlinear absorption of a short intense laser pulse in a nonuniform plasma, A.A. Andreev and K. Yu. Platonov, Physics of Plasmas volume 10, number 1, January 2003 ▪Influence of subpicosecond laser pulse duration on proton acceleration, A. Flacco, PHYSICS OF PLASMAS 16, ,2009 ▪Energetic proton generation in ultra-intense laser-solid interactions, S. C. Wilks, Physics of plasmas, 8(2), 2001 ▪Short Pulse Laser Interaction with Matter, Paul Gibbon