Abundance analysis on Late G giants — 59 stars of Xinglong Planet search sample Yujuan Liu( 劉玉娟 ) NAOC/NAOJ Ando H., G. Zhao, Sato Bun’ei, Takeda Y.,

Slides:



Advertisements
Similar presentations
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Advertisements

Opacities and Chemical Equilibria for Brown Dwarf and Extra-Solar Giant Planet Models Christopher M. Sharp June 9, 2004.
Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
基于 LAMOST 巡天数据的大样 本 M 巨星搜寻和分类 钟靖 中国科学院上海天文台. M giants Red : surface temperature lower than 4000K Luminous: M J from to mag (Covey et al.2007)
Martin Asplund Galactic archeology & planet formation.
Chemical Models of Protoplanetary Disks for Extrasolar Planetary Systems J. C. Bond and D. S. Lauretta, Lunar and Planetary Laboratory, University of Arizona.
Lithium abundance in the globular cluster M4: from the Turn-Off up to the RGB Bump Collaborators: M. Salaris (University of Liverpool, UK) L. Lovisi, F.R.
Metal Poor Stars Jeff Cummings Indiana University April 15, 2005.
Chapter 13 Cont’d – Pressure Effects
SLEUTHING MASS OUTFLOW FROM EVOLVED STARS Optical/IR Spectroscopy from the MMT, KECK II, and Magellan Andrea Dupree (SAO/CfA) Sz. Meszaros (SAO), Jay Strader.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Dec 2003 Abundances in NGC6752.
Near-Infrared Spectral Properties of Metal-Poor Red Supergiants Valentin D. Ivanov (ESO) Collaborators: Marcia J. Rieke, A. Alonso- Herrero, Danielle Alloin.
Mass Loss from Red Giant Branch (and AGB) Stars in Globular Clusters Andrea Dupree Harvard-Smithsonian Center for Astrophysics AGB Workshop: 20 May 2010.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Exploring the Stellar Populations of Early-Type Galaxies in the 6dF Galaxy Survey Philip Lah Honours Student h Supervisors: Matthew Colless Heath Jones.
Nuno C. Santos Cool Stars 13 - Hamburg, Germany - July2004 Spectroscopic characteristics of planet-host stars and their planets Nuno C. Santos (Observatory.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio Abundances in M71.
Non-LTE abundance analysis: K & Sc Huawei Zhang Department of Astronomy, School of Physics, Peking University.
Compilation of stellar fundamental parameters from literature : high quality observations + primary methods Calibration stars for astrophysical parametrization.
„We are not talking about cosmology...“ (A. Sozzetti)
The Milky Way: How do we know what it looks like? Bryan Hill.
A New Technique to Measure ΔY/ΔZ A. A. R. Valcarce (UFRN) Main collaborators: J. R. de Medeiros (UFRN)M. Catelan (PUC) XXXVII SAB meeting Águas de Lindóia,
Non-LTE in Stars The Sun Early-type stars Other spectral types.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
Chapter 14 – Chemical Analysis Review of curves of growth How does line strength depend on excitation potential, ionization potential, atmospheric parameters.
Young active star research with SONG and mini-SONG Huijuan Wang National Astronomical Observatories Chinese Academy of Charleston.
The study on Li abundances of solar-like stars Li Tanda Beijing Nomal University
Subaru HDS Transmission Spectroscopy of the Transiting Extrasolar Planet HD b The University of Tokyo Norio Narita collaborators Yasushi Suto, Joshua.
High Resolution Spectroscopy of Stars with Planets Won-Seok Kang Seoul National University Sang-Gak Lee, Seoul National University Kang-Min.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
Class Goals Familiarity with basic terms and definitions Physical insight for conditions, parameters, phenomena in stellar atmospheres Appreciation of.
14 N/ 15 N ratios in AGB C-stars and the origin of SiC grains Eurogenesis- Perugia Workshop, Nov 12-14, 2012 C. Abia R. Hedrosa (Granada) B. Plez (Montpellier)
The Galactic Habitable Zone Guillermo Gonzalez Iowa State University Fermilab August 21, 2002 Acknowledgements: Don Brownlee Peter Ward.
Gyöngyi Kerekes Eötvös Lóránd University, Budapest MAGPOP 2008, Paris István Csabai László Dobos Márton Trencséni.
Abundances of Refractory Elements for Planet-Host Stars Lee, Sang-Gak Seoul National University Kim, Kang-Min Korea Astronomy and Space Science Institute.
Chemical Composition of Planet-Host Stars Wonseok Kang Kyung Hee University Sang-Gak Lee Seoul National University.
Comprehensive Stellar Population Models and the Disentanglement of Age and Metallicity Effects Guy Worthey 1994, ApJS, 95, 107.
Chapter 15 – Measuring Pressure (con’t) Temperature spans a factor of 10 or so from M to O stars Pressure/luminosity spans six orders of magnitude from.
Monitoring of the Yellow Hypergiant Rho Cas: Results of the High-Resolution Spectroscopy During V.G. Klochkova (SAO RAS, Nizhnij Arkhyz, Russia)
The University of Tokyo Norio Narita
The Giant Branches – Leiden 14/05/09 The Initial-Final Mass Relation Aldo Serenelli – MPA Salaris, Serenelli, Weiss & Miller Bertolami (2009)
Asteroseismology and the Time Domain Revolution in Astronomy Marc Pinsonneault Ohio State University Collaborators: The APOKASC team Melissa Ness Marie.
M5 = NGC 5904 ( nearest “intermediate-metallicity” globular cluster accessible from a northern hemisphere site ) Harris (2003, Feb version) 7.5kpc from.
Metallicity and age of selected nearby G-K Giants L. Pasquini (ESO) M. Doellinger (ESO-LMU) J. Setiawan (MPIA) A. Hatzes (TLS), A. Weiss (MPA), O. von.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
IGRINS for Stellar Abundances & Nucleosynthesis Chris Sneden, Natalie Gosnell, Dan Jaffe, Greg Mace, Richard Seifert (UT Austin) Hwihyun Kim + IGRINS team.
Universe Jeopardy Stars A Star’s Life H-R Diagram Major Structures Big Bang Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Oct 2003 Abundances in M92.
“Why are massive O-rich AGB stars in our Galaxy not S-stars?” D. A. García-Hernández (IDC-ESAC, Madrid, Spain) In collaboration with P. García-Lario (IDC-ESAC),
FUSE spectroscopy of cool PG1159 Stars Elke Reiff (IAAT) Klaus Werner, Thomas Rauch (IAAT) Jeff Kruk (JHU Baltimore) Lars Koesterke (University of Texas)
The High Redshift Universe Next Door
Chapter 13 Cont’d – Pressure Effects More curves of growth How does the COG depend on excitation potential, ionization potential, atmospheric parameters.
Holtzman: General interests ● Stellar populations – Solar neighborhood star formation history – Local group dwarf star formation histories – M33 star formation.
Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project: Spectroscopic Analyses of the First ~80 Stars 5 May 2010 Julie Krugler.
An Abundance Spread in the Bootes I Dwarf Spheroidal Galaxy? John E. Norris The Australian National University Gerard Gilmore University of Cambridge R.F.G.
Determining Abundances
Joleen Carlberg July 12, 2017 Abstract:
Chapter 14 – Chemical Analysis
Stars and spectral analysis:
Chapter 16 – Chemical Analysis
Astrobiology Workshop June 29, 2006
Y. Katsuta1), T. Suda1,2), S. Yamada1), N. Nishimura3),
Mikako Matsuura National Astronomical Observatory of Japan
Planetary Nebula abundances in NGC 5128 with FORS
The University of Tokyo Norio Narita
Jiannan Zhang, Yihan Song, Ali Luo NAOC, CHINA
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Presentation transcript:

Abundance analysis on Late G giants — 59 stars of Xinglong Planet search sample Yujuan Liu( 劉玉娟 ) NAOC/NAOJ Ando H., G. Zhao, Sato Bun’ei, Takeda Y.,

Contents Introduction of purpose of this work Sample observation and reduction Stellar parameters and kinematic parameters Surface chemical compositions analysis

Host Stars’ Metallicity--dwarf  More planets around more metal-rich stars  No planets around metal-poor (-2<[Fe/H]<-0.8) stars so far Fisher et al. 2005

Host Stars’ Metallicity--giants About 20 candidates around giants, more than half of them are under solar metallicity Pasquini et al blue line- 14 giants red dashed line--dwarfs The giants show a distribution shifted to lower metallicity by about dex with respect to the dwarf.

Takeda et al Since the small number of detected planets around giants, this statistics results remain unclear.

Lack of giants with [Fe/H] > 0.2 Soubiran et al (891 sample) Takeda et al (322 sample) Metallicity distribution of thin disk clump giants of the local (filled) and distant sample (red line)

Red giants Branch CNO cycle: C decrease N increase O decrease or unchanged NaNe cycle: Na increase When the star moves towards RGB, the nucleosynthesis products penetrate into the atmosphere due to first dredge-up phase, changing the surface abundance of Li, C, N, O and Na. The effect depends both on the stellar mass and metallicity.

Mishenina et al. (2006)- 177 RCG Na C deplete 0.28 dex N overabundance 0.21 dex O no change Na overabundance 0.1dex

Luck et al giants C depleted O unaffected

Purpose of this work Establish stellar parameters and kinematic parameters Determine surface chemical compositions, focusing on C, O, Na Find super metal-rich stars ([Fe/H]>0.2)

Observational Data  Sample selection B-V: M v : V: 6 δ: >-20°  Data Observation HIDES attached to OAO R=67000 wavelength coverage: 44 stars stars S/N:

Data reduction  IRAF: bias subtraction, flat-fielding, scattered-light subtraction, spectrum extraction, wavelength calibration, continuum normalization  EW: fitting by a Gaussion function--SPSHOW program developed by Takeda et al. 2005

Stellar Parameters-T eff  Effective temperature – (B-V) color index and [Fe/H] from empirical calibration of Alonso et al. (1999)  E(B-V)s --Schlegel et al. (1998) For nearby stars

Stellar Parameters-Teff E(B-V) can be acceptable

Stellar Parameters-logg  Surface gravity log(g/g ⊙ ) = log(M/M ⊙ ) + 4 log(Teff/Teff ⊙ ) + 0.4(Mbol - Mbol ⊙ ) where : M bol = V + BC - 5 logπ + 5-Av A v = 3.1E(B-V) Mass– evolution track of Yonsei-Yale (Yi et al. 2003) within 0.3 M ⊙ difference with those from Giradi (2000)---Liu et al. 2007

Stellar Parameters-V t  Microturbulent velocities were calibrated by forcing different Fe I lines with 10< EW <120 mÅ give a uniform iron abundance value.  Finally, the whole procedure of determination of T eff, logg and metallicity was repeated until the final metallcity from the equivalent width calculation was full consistency with input [Fe/H] within 0.01 dex.

Ionization equilibrium test

◊ Brown et al (7 stars) ○ Mishenina et al (4 stars) ∆ Luck et al (4 stars) stellar parameter consistency check with literatures

[Fe/H] 0.05 dex higher than literature

Stellar parameters with Takeda 2008

Error analysis( HD47366, Teff=4834,logg=2.76,vt=1.3,[Fe/H]=-0.01 ) Δ T eff (+100K) Δ Logg (0.1) Δ[Fe/H] (0.1) Δv t (0.3kms-1) tot Δ[Fe/H] Δ[Fe/H] II Δ[C/Fe II ] Δ[O/Fe] Δ[Na/Fe] Δ[Si/Fe] Δ[Ca/Fe] Δ[Ti/Fe] Δ[Cr/Fe] Δ[Ni/Fe] Δ[Y/Fe] II

Kinematic parameters Most stars belong to thin disk. Thick disk stars—higher eccentricity

Thick disk stars—higher space velocity —low mass (old stars)

● O 6363 Δ O 5557 Abundance Analysis [O/Fe] 6300 = -0.02±0.04 dex + [O/Fe] 6363

Abundance Analysis O O6300 [O/Fe] 6300 = 0.08±0.05 dex + [O/Fe] 5577

Carbon Oxygen C depleted O remain unaffected

Sodium Na overabundance 0.1 dex

C,O,Na with Mass

Si,Ca

Ti, Cr

Ni, Mn

Ce,Y

Sc

Remind problems  Abundance from O 5057 maybe not correct

Conclusion  Stellar parameter lie in the main group of Takeda et al. 2008, lack of stars [Fe/H]>0.2  Most sample belong to thin disk stars  C depleted 0.13 dex(-0.1<[Fe/H]<0.1)  O remain unaffected  Na overabundance 0.1 dex The effect dependt on [Fe/H] and Mass.  Other elements remain unaffected, consisting with results of Takeda et al. (2008) Consist with theoretical results