LCGT Vacuum System Items ** two beam tubes of 3-km long and 800 mm in diameter ** optical baffles distributed at every 12 meter in the beam tubes ** chambers.

Slides:



Advertisements
Similar presentations
ET-meeting, 22 th Oct N. KIMURA/KEK The Latest Status of the KAGRA Cryogenics N. KIMURA A, D. CHEN B, T. KUME A, S. KOIKE A, Y. SAKAKIBARA B, T.
Advertisements

Vibration Isolation Group R. Takahashi (ICRR)Chief T. Uchiyama (ICRR)Payload design H. Ishizaki (NAOJ)Prototype test R. DeSalvo (Caltech)SAS design A.
9 th /July/2013 Amaldi 10 C3 15:24~15:42 N.KIMURA/KEK Progress on the Cryogenic System for the Interferometric Cryogenic Gravitational Wave Telescope,
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Vacuum Fundamentals Lecture 5 G.J. Mankey
MICE RF Cavity Design and Fabrication Update Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 27, 2004.
KAGRA Vacuum System VAC (YS) 1 1. Layout (interferometer and survey map) **tilting the optical plane of interferometer for draining water. **horizontal.
Wed 15 Jul 2009 ATF2 weekly meeting Oxford MONALISA 1 MONALISA at ATF2 First installation report 15 July 09.
Progress in water vapour spectroscopy at RAL Dr Robert McPheat CAVIAR Progress Meeting University of Leicester, 24/09/2009.
BS and Mirrors for the LCGT Norikatsu Mio, PSC Univ. of Tokyo Eiichi Hirose, ICRR Univ. of Tokyo December 13, 2011 CSIRO, Lindfield Australia.
Internal Cryomodule Instrumentation Sensors, Actuators, Heaters, and Wiring ERL Main Linac Cryomodule 9/5/2012 Peter Quigley Internal Design Review.
Vacuum, Surfaces & Coatings Group Technology Department Vacuum tests for CLIC module prototypes 6 November 2013 C. Garion2 Outline: Reminder: specification.
KAGRA Vacuum System Items of vacuum sub-group 1 1. Overview VAC (YS) Required Pressure “uhv (ultra-high-vacuum)” in the order of Pa, or lower.
Vacuum system in the main Linacs C. Garion CERN/TE/VSC CLIC09 workshop, October.
SEO report _SAITO 1. Overall schedule of iKAGRA installation/commissioning change to Michelson Interferometer 2. Scheduling of daily works for installation.
LCGT Vacuum System VAC (YS) 1 1. Overview Items ** two beam tubes of 3-km long and 800 mm in diameter ** optical baffles distributed at every 12.
1 Tetsuhiko Yorita JASRI/SPring-8 Acc. Div. SPring-8 Vacuum System Contents - Outline of Vacuum system - Pressure behavior - Some topics.
Status of vacuum & interconnections of the CLIC main linac modules C. Garion TE/VSC TBMWG, 9 th November 2009.
Cryogenics for LCGT Technical Advisory Committee for LCGT ICRR SUZUKI, Toshikazu High Energy Accelerator Research Organization.
Status of LCGT and CLIO Masatake Ohashi (ICRR, The University of TOKYO) and LCGT, CLIO collaborators TAUP2007 Sendai, Japan 2007/9/12.
Date Event Global Design Effort 1 Technical System Review John Noonan, ANL Yusuke Suetsugu,KEK Paolo Michelato, INFN Milano.
AdV Vacuum system changes, 04Mar2010, NDRC option Preliminary Cryotrap_NI Link or tube? Cryotrap_NE Link Cryopump SR? Cryopump PR? Zeolites/27K/77K (or.
27/Aug./2015 KAGRA f2f meeting N. KIMURA High Energy Accelerator Research Organization, KEK Progress status of Cryogenic System at KAGRA site.
Electrostatic Septum For AGS C. Pai Brookhaven National Laboratory Collider-Accelerator Department
LCGT Cryogenics Status Report KEK T.Suzuki.
BDS 11 Vacuum System for BDS [Completeness of RDR] Y. Suetsugu J. Noonan and P. Michelato Design principle Basic design Cost estimation.
VIRGO_LCGT Meeting Laser & Mirror 5 November, 2010 Norikatsu Mio.
ICRR Seminar 2009/07/24 Cryogenics in CLIO Masatake Ohashi and the LCGT collaboration.
T Akutsu 1, S Telada 2, T Uchiyama 1, S Miyoki 1, K Yamamoto 1, M Ohashi 1, K Kuroda 1, N Kanda 3 and CLIO Collaboration. 1 ICRR, Univ. of Tokyo, 2 AIST,
Sapphire for the LCGT project Eiichi Hirose ICRR, University of Tokyo Kyohei Watanabe, Norikatsu Mio PSC, University of Tokyo GT Advanced Technology, Sep.
Low frequency anti-vibration system of LCGT Vibration Isolation Group R. Takahashi (ICRR), K. Yamamoto (ICRR), T. Uchiyama (ICRR), T. Sekiguchi (ICRR),
1 Vacuum chambers for LHC LSS TS Workshop 2004 Pedro Costa Pinto TS department, MME group Surface Characterization & Coatings Section.
SKEKB Mini Work SKEKB Vacuum System – Arc Section – Contents Y.Suetsugu KEKB Vacuum Group 1.Beam Chambers 2.Pumps: Pump, Pressure,
AdV Vacuum system changes, Feb2010 ‘New stations’ generic Layout preliminary Cryotrap_NICryotrap_NE Cryotrap_WI Cryotrap_WE Cryotrap_DT ? Cryotrap_IB ?
2007/09/17-21 SLAC IRENG07 1 A Basic Design of IR Vacuum system Y. Suetsugu, KEK Possibility of a pumping system without in-situ baking at z < L*
LCGT f2f meeting/ICRR, 04/Aug./2011 N. KIMURA Status of the Cryogenics Design N. KIMURA A, S. KOIKE B, T. KUME B, T. OHMORI D, Y. SAITO C, Y. SAKAKIBARA.
The integration of 420 m detectors into the LHC
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research The University of Tokyo KAGRA external review (Cryogenic payload) 18 April 2012.
GWADW2011 Elba/Italy, 23/May/2011 N. KIMURA and Y. SAKAKIBARA Present Design of LCGT Cryogenic Payload - Status of Cryogenic Design - N. KIMURA*, Y. SAKAKIBARA**,
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research The university of Tokyo LCGT internal review (Cryogenic payload) 30 January 2012.
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research The university of Tokyo LCGT internal review (Cryogenic payload) 30 January 2012.
IKAGRA 初期アラインメント手順 Initial Alignment Procedure for iKAGRA Yuta Michimura Department of Physics, University of Tokyo July 5, 2016JGW-T
Main Interferometer Subsystem
2007/09/17 SLAC IRENG07 1 Comment on IR Vacuum system Y. Suetsugu Pumping System without in-situ baking at z < L*
LCGT Vacuum System Items ** beam tubes of 3-km long and 800 mm in diameter ** optical baffles distributed in the beam tubes ** chambers for the mirrors.
Input Mode Matching of LCGT 2012/1/5, Yoichi Aso.
Areal RF Station A. Vardanyan
Vacuum System P. Chiggiato TE-VSC
Peter Beyersdorf TAMA300 Results from the Stanford 10m all-reflective polarization Sagnac interferometer Peter Beyersdorf TAMA300.
Main Interferometer Subsystem
Main Interferometer Subsystem
MICE Meeting at RAL, Oct-23, 2005
Cornell ERL Prototype Injector DC Photocathode Gun Design Review Vacuum Systems Yulin Li, January 5th– 6th, /5-6/2011 Cornell Gun Review.
RTML Vacuum System RDR Summary FermiLab October 24, 2007
Yuta Michimura Department of Physics, University of Tokyo
CEPC Vacuum System Dong Haiyi 2017/11/5.
Yoichi Aso on behalf of the LCGT ISC Group
Control of the KAGRA Cryogenic Vibration Isolation System
Martin Dommach TDR ART Review, Hamburg, September 14, 2012
Vibration Isolation Systems
XFEL Collimation and Beam Switchyard Vacuum Issues
Summary of iKAGRA Test Run Mar 25-31, 2016
AdV - Internal Review of VAC subsystem
Commissioning Procedure for bKAGRA Phase 1
iKAGRA初期アラインメント手順 Initial Alignment Procedure for iKAGRA
Yuta Michimura Department of Physics, University of Tokyo
Status of KAGRA Yuta Michimura on behalf of the KAGRA Collaboration
Status of KAGRA Yuta Michimura on behalf of the KAGRA Collaboration
Development of vibration isolation systems for LCGT VII
‘New stations’ generic Layout Preliminary, NDRC or MSRC?
Yuta Michimura Department of Physics, University of Tokyo
Presentation transcript:

LCGT Vacuum System Items ** two beam tubes of 3-km long and 800 mm in diameter ** optical baffles distributed at every 12 meter in the beam tubes ** chambers for the mirrors with suspension and vibration-isolation devices ** vacuum pumping system ** overall layout VAC (YS) Interface all of the subsystems ** choice of materials for components used in cryostat, optical devices, vibration-isolation devices,, … ** interferometer layout and operation sequence cf. vacuum system philosophy in accelerator ** beam dynamics and vacuum system have to be designed simultaneously. ** choice of materials having low outgassing is most important. ** mechanical and electric design has to be simple. ** materials properties have to be examined and measured before choosing. (KEK Internal 07-17) 1 1. Overview

** We predict the noise  x due to the residual gas (water) molecules; for  x = 1× Hz (safety margin of 10), the pressure in the beam tubes is to be kept at 2×10 -7 Pa. (h=3× /(Hz) corresponds to  x=1× m/(Hz) 1/2 ) > VAC (YS) ** For long-term and stable operation of the interferometer, the vacuum system is to be designed so as to minimize the maintenance work, and so as to shorten the pump-down time. A long lifetime of the vacuum component and low outgassing is required. > Ti cathode Penning cell Required Pressure : in the order of Pa, or lower 2 LCGT Vacuum System 2. System design

LCGT Vacuum System VAC (YS) ETMYA ITMY ETMXAITMX IP TMP FL P BSPRMPR3PR2 SRM SR3 SR2 PD MCF MC 3000 m double chambers (2.4 and 1.5 m in dia.) //GASF + I-Pendulum + cryogenic// chambers (1.5 m in dia./2 m for BS) //GASF + I-Pendulum// chambers (2 m in dia.) //stack + D-Pendulum// iLCGT MMT ETMYB ETMXB less changes “i” to “b” 3 2. System design

** “ surface passivation” is performed by electro-polish followed by bake. expected outgassing rate is on the order of Pa m 3 m -2 s -1, or lower. Rmax 3  m, Ra 0.5  m. ** “ flange connection” with metal O-ring gasket (silver plated) is chosen. humidity test of the gasket shows erosion proof. ** tubes of “ mirror finish by Electro-Chemical Buffing” is to be installed in the mid region of 800-m long. Rmax 0.2  m, Ra 0.03  m VAC (YS) Electro-polished tube of 12 m long 4 LCGT Vacuum System beam tube ( 478 of 12-m long and 0.8 m in diameter ) 2. System design

N=(h/d)/(L/R) ** estimated scattered light noise at Kamioka  x = 3× (tube vibration amplitude=1× m/√Hz assumed ) ** For more margin, baffles at “ every 12 meters”.  x = 5× m/√Hz ** For randomizing phase of edge-scattered light, baffles with “ saw-tooth edge” VAC (YS) 5 LCGT Vacuum System optical baffle ( every12-m along the arm, 40-mm in height, 45-degree tilted) 2. System design

** measured outgassing rate of DLC is 4×10 -9 Pa m 3 m -2 s -1, VAC (YS) 真空 6 LCGT Vacuum System optical baffle ( diamond-like-carbon/DLC coated) 2. System design

** 17 of 21 chambers are operated at room temperature, 4 for cryogenic system ** installed materials of elastomer and plastomer should be investigated. ** Although the aluminum-coated thin PET (polyethylene terephtalate) film is suitable material for thermal shield, the outgassing rate is higher than those of metal surfaces. ** Outgassing rate of a PET film of 12 micrometer thick is measured. The rate decreases to Pa m 3 s -1 m -2 for about 10h, then reaching to the order of Pa m 3 s -1 m -2 for 200h. ** Water molecules absorbed in film is possibly diffused to the surface and desorbed with a long period of 100 hours VAC (YS) 7 LCGT Vacuum System chambers 2. System design

** pumping unit consisted of dry-pump, TMP and ion-pump is distributed “ every 100 meters” along tubes. ETMXITMX IP TMP FL P 3000 m ** expected pump-down scheme (a 3-km arm) to 1 Pa >> few days by dry-pump to Pa >> 50 hours by TMP to Pa >> 500 hours by IP (based on the ougassing rate in test tubes) ** pumping speed of the unit (100 m) 600 m 3 /h >> dry-pump 2000 L/s >> TMP 500 L/min >> TMP foreline pump 1000 L/s >> IP VAC (YS) DRY P 8 LCGT Vacuum System pumping system ( dry-pump and ion-pump ) 2. System design

control signal 0/1 pressure readout VAC (YS) 9 LCGT Vacuum System vacuum system control 2. System design arm tunnel, center/end room BA gauge ULVAC GI-M2 controller PLC Yokogawa A/D Yokogawa MW100 Micro IOC Center control EPICS Pirani gauge Convectron type Gate valve ( actuator ) Ion pump VARIAN type Ion pump Gamma type Ethernet RS485 → status: 3 ← control: 3 → status: 4 ← control: 2 → status: 2 ← control: 1 controller A gate valves of large diameter takes 40 seconds for closing.

VAC (YS) ETMYA ITMY ETMXA ITMX BSPRMPR3PR2 SRM SR3 SR2 PD MCF MC 3000 m iLCGT MMT ETMYB ETMXB bLCGTHR CenterHR Chord CenterCenter of Mass x [m]y [m]x [m]y [m]x [m]y [m] PRM ETMX E E E ETMY E E E+03 PR SRM SR SR PR BS-7.63E E E E ITMX ITMY iLCGTHR CenterHR Chord CenterCenter of Mass x [m]y [m]x [m]y [m]x [m]y [m] PRM ETMX(iEOAX) E E E ETMY(iEOAY) E E E+03 PR SRM SR SR PR BS-4.09E E E E ITMX(iIAOX) ITMY(iIAOY) less changes “i” to “b” 10 LCGT Vacuum System layout 2. System design

VAC (YS) ETMYA ITMY ETMXA ITMX BSPRMPR3PR2 SRM SR3 SR2 PD MCF MC 3000 m iLCGT MMT ETMYB ETMXB i-bHR CenterHR Chord CenterCenter of Mass delta x [mm]delta y [mm]delta x [mm]delta y [mm]delta x [mm]delta y [mm] PRM ETMX ETMY PR SRM SR SR PR BS ITMX ITMY less changes “i” to “b” LCGT Vacuum System layout 2. System design

x y Yopt horizontal plane at center room horizontal plane at X end Y arm optical plane of interferometer X arm BS ETMX ETMY X arm Y arm ITMX ITMY Xopt Yopt O Xopt O (BS) iLCGT 1/ VAC (YS) horizontal plane at Y end 12 LCGT Vacuum System layout 2. System design ** floors for installing chambers; horizontal

x y Yopt horizontal plane at center room horizontal plane at X end Y arm optical plane of interferometer X arm Xopt O (BS) VAC (YS) horizontal plane at Y end 13 LCGT Vacuum System layout 2. System design ** unit vectors in each coordinate ** transformation matrix for 4 sets of coordinates

x y Yopt horizontal plane at center room horizontal plane at X end Y arm optical plane of interferometer X arm Xopt O (BS) VAC (YS) horizontal plane at Y end 14 LCGT Vacuum System layout 2. System design ** description in other coordinate

x y Yopt horizontal plane at center room horizontal plane at X end Y arm optical plane of interferometer X arm BS ETMX ETMY X arm Y arm ITMX ITMY Xopt Yopt O Xopt O (BS) iLCGT 1/ VAC (YS) horizontal plane at Y end 15 LCGT Vacuum System layout 2. System design 500 m ** a set of two 1.5-km long interferometer for geophysics

VAC (UI) 16 LCGT Vacuum System

センタールーム座標系 VAC (UI) 17 LCGT Vacuum System 光学系座標系

変換式を使用して bLCGT の鏡の座標を計算した。 VAC (UI) 18 LCGT Vacuum System センタールーム座標系 光学系座標 系(麻生データ)

VAC (UI) 19 LCGT Vacuum System 3D-CAD 図面の作成

VAC (UI) 20 LCGT Vacuum System 3D-CAD 図面の作成

Apr 2014 Apr 2014 to Aug 2014 Sep 2014 Oct 2014 to Mar ) manufacturing 478 of tubes; from Apr 2011 to Mar ) manufacturing chambers; from Sep 2012 to Mar ) installing chambers in X end; Apr ) installing tubes in X arm; from Apr 2014 to Aug ) installing chambers in Center Room; Sep ) installing tubes in Y arm; from Oct 2014 to Mar ) installing chambers in Y end; Mar 2015 X arm pump down; Sep 2014 Y arm pump down; Mar VAC (YS) LCGT Vacuum System expected schedule for installing (1) 3. Schedule ETMYA ITMY ETMXA ITMX BSPRMPR3PR2 SRM SR3 SR2 PD MCF MC 3000 m iLCGT MMT ETMYB ETMXB carrying tubes from MOZUMI pithead

Apr 2014 Apr 2014 to Aug 2014 Sep 2014 Oct 2014 to Mar ) manufacturing 478 of tubes; from Apr 2011 to Mar ) manufacturing chambers; from Sep 2012 to Mar ) installing chambers in X and Y ends; Apr ) carrying tubes and lay on the supports; from Apr 2014 to Jun ) jointing tubes and pump down in X and Y arm from Jul 2014 to Mar ) installing chambers in Center Room; Jul 2014 X arm pump down; Oct 2014 Y arm pump down; Mar VAC (YS) LCGT Vacuum System expected schedule for installing (2) 3. Schedule carrying tubes from ATOTSU pithead ETMYA ITMY ETMXA ITMX BSPRMPR3PR2 SRM SR3 SR2 PD MCF MC 3000 m iLCGT MMT ETMYB ETMXB

** recovery “without breaking arm-vacuum” BA gauge failure: grid contamination, filament breakdown feedthrough erosion; high voltage feedthrough of ion pump power supply/controller erosion; ion pump, turbo molecular pump durability for humidity is being examined (50°C-98%, 7 cycle of 8h-operation/98h-off). ** recovery “by re-pumping an arm” window (view port) break down crack and erosion in bellow joint metal gasket erosion ** safety “by closing gate valves (large dia,)” electric-power shut down anomalous pressure rise ETMXITMX 3000 m expected pump-down scheme (a 3-km arm) to 1 Pa >> few days by dry-pump to Pa >> 50 hours by TMP to Pa >> 500 hours by IP (based on the ougassing rate in test tubes) VAC (YS) IP TMP FL P DRY P 23 LCGT Vacuum System vacuum component failure and leakage 4. Risk management

** “ surface passivation process” of stainless steel prior to installation is planned by applying electro- polishing, and then followed by pre-baking treatment. ** “ outgassing rate” of the order of Pa m 3 m -2 s -1, or lower is performed in J-PARC. Appendix: outgassing data measured for technical surface VAC (YS) 24 LCGT Vacuum System