Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.

Slides:



Advertisements
Similar presentations
What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
Advertisements

13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Data Communication and Networks Lecture 7 Networks: Part 2 Routing Algorithms October 27, 2005.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 17.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
CPSC441: Routing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 hours.
Network Layer4-1 Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross.
Lecture 7 Overview. Two Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
1 Announcement #1 r Did you all receive homework #1 and #2? r Homework #3 will be available online during the day r Midterm.
Routing Algorithm March 3 rd, Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links  link cost:
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 18.
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
1 CSCD 330 Network Programming Spring 2014 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Network Layer4-1 Chapter 4 Network Layer Part 3: Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
13 – Routing Algorithms Network Layer.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
1 Week 5 Lecture 2 IP Layer. 2 Network layer functions transport packet from sending to receiving hosts transport packet from sending to receiving hosts.
Routing 1 Network Layer Network Layer goals:  understand principles behind network layer services:  routing (path selection)  how a router works  instantiation.
Introduction 1 Lecture 19 Network Layer (Routing Algorithms) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Computer Networks CSE 434 Fall 2009 Sandeep K. S. Gupta Arizona State University Research Experience.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
CS 4284 Systems Capstone Godmar Back Networking. CS 4284 Spring 2013 Summary Basics of Network Layer –Routing (path selection) vs Forwarding (switching)
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Project 2 r DUE Wed: 02/24 Network Layer4-1. Project 2 r DUE Wed: 02/24 r DUE Mon: 02/29 Network Layer4-2.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CSE 421 Computer Networks. Chapter 4 Network Layer Thanks to you All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Chapter 7 Dynamic Routing
Chapter 4 Network Layer A note on the use of these ppt slides:
Network Layer Introduction Datagram networks IP: Internet Protocol
Chapter 5 Network Layer.
Chapter 4: outline 4.1 introduction
2017 session 1 TELE3118: Network Technologies Week 7: Network Layer Control Plane: Intra-Domain Routing Some slides have been adapted from: Computer Networking:
Road Map I. Introduction II. IP Protocols III. Transport Layer
Lecture 10 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
CSCD 330 Network Programming
Chapter 4-4 routing and IP routing
CS4470 Computer Networking Protocols
CMPE 252A : Computer Networks
Network Layer (contd.) Routing
Chapter 4: Network Layer
CSCD 330 Network Programming
Network Layer: Link-state and Distance-Vector Routing Protocols
Chapter 4: Network Layer
CSCD 330 Network Programming
Chapter 4 Network Layer A note on the use of these ppt slides:
Presentation transcript:

Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!)  If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved The course notes are adapted for Bucknell’s CSCI 363 Xiannong Meng Spring 2016

Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4 addressing  ICMP  IPv6 4.5 routing algorithms  link state  distance vector  hierarchical routing 4.6 routing in the Internet  RIP  OSPF  BGP 4.7 broadcast and multicast routing Chapter 4: outline

Network Layer IP destination address in arriving packet’s header routing algorithm local forwarding table dest address output link address-range 1 address-range 2 address-range 3 address-range Interplay between routing, forwarding routing algorithm determines end-end-path through network forwarding table determines local forwarding at this router

Network Layer 4-4 u y x wv z graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) } Graph abstraction aside: graph abstraction is useful in other network contexts, e.g., P2P, where N is set of peers and E is set of TCP connections

Network Layer 4-5 Graph abstraction: costs u y x wv z c(x,x’) = cost of link (x,x’) e.g., c(w,z) = 5 cost could always be simply be 1, or inversely related to bandwidth, or inversely related to congestion cost of path (x 1, x 2, x 3,…, x p ) = c(x 1,x 2 ) + c(x 2,x 3 ) + … + c(x p-1,x p ) key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

Network Layer 4-6 Routing algorithm classification Q: global or decentralized information? global:  all routers have complete topology, link cost info  “link state” algorithms decentralized:  router knows physically- connected neighbors, link costs to neighbors  iterative process of computation, exchange of info with neighbors  “distance vector” algorithms Q: static or dynamic? static:  routes change slowly over time dynamic:  routes change more quickly  periodic update  in response to link cost changes

Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4 addressing  ICMP  IPv6 4.5 routing algorithms  link state  distance vector  hierarchical routing 4.6 routing in the Internet  RIP  OSPF  BGP 4.7 broadcast and multicast routing Chapter 4: outline

Network Layer 4-8 A Link-State Routing Algorithm Dijkstra’s algorithm  net topology, link costs known to all nodes  accomplished via “link state broadcast”  all nodes have same info  computes least cost paths from one node (‘source”) to all other nodes  gives forwarding table for that node  iterative: after k iterations, know least cost path to k dest.’s notation:  c(x,y): link cost from node x to y; = ∞ if not direct neighbors  D(v): current value of cost of path from source to dest. v (‘D’ is for distance)  p(v): predecessor node along path from source to v  N': set of nodes whose least cost path definitively known

Network Layer 4-9 Dijsktra’s Algorithm 1 Initialization: 2 N' = {u} 3 for all nodes v 4 if v adjacent to u 5 then D(v) = c(u,v) 6 else D(v) = ∞ 7 8 Loop 9 find w not in N' such that D(w) is a minimum 10 add w to N' 11 update D(v) for all v adjacent to w and not in N' : 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N'

Network Layer 4-10 Dijkstra’s algorithm: an example Step N' u ux uxy uxyv uxyvw uxyvwz D(v),p(v) 2,u D(w),p(w) 5,u 4,x 3,y D(x),p(x) 1,u D(y),p(y) ∞ 2,x D(z),p(z) ∞ 4,y u y x wv z

Network Layer 4-11 Dijkstra’s algorithm: example (2) u y x wv z resulting shortest-path tree from u: v x y w z (u,v) (u,x) destination link resulting forwarding table in u:

Network Layer 4-12 w 3 4 v x u y 8 z Dijkstra’s algorithm: another example Step N'N' D(v) p(v) D(w) p(w) D(x) p(x) D(y) p(y) D(z) p(z) u ∞∞ 7,u 3,u 5,u notes:  construct shortest path tree by tracing predecessor nodes  ties can exist (can be broken arbitrarily)

Network Layer 4-13 w 3 4 v x u y 8 z Dijkstra’s algorithm: another example Step N'N' D(v) p(v) D(w) p(w) D(x) p(x) D(y) p(y) D(z) p(z) u ∞∞ 7,u 3,u 5,u uw ∞ 11,w 6,w 5,u 14,x 11, w 6,w uwx uwxv 14,x 10, v uwxvy 12,y notes:  construct shortest path tree by tracing predecessor nodes  ties can exist (can be broken arbitrarily) uwxvyz

Network Layer 4-14 Dijkstra’s algorithm, discussion algorithm complexity: n nodes  each iteration: need to check all nodes, w, not in N  n(n+1)/2 comparisons: O(n 2 )  more efficient implementations possible (using min- heap as priority queue): O(nlogn) oscillations possible:  e.g., suppose link cost equals amount of carried traffic: A D C B 1 1+e e 0 e Initially, all zeros, when B, C, D sends data Into the network A D C B given these costs, find new routing…. resulting in new costs 2+e e 1 A D C B given these costs, find new routing…. resulting in new costs 0 2+e 1+e A D C B given these costs, find new routing…. resulting in new costs 2+e e 1