SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006

Slides:



Advertisements
Similar presentations
Paul Emma SLAC January 14, 2002 BERLIN CSR Benchmark Test-Case Results CSR Workshop.
Advertisements

Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
ILC Accelerator School Kyungpook National University
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Bunch compressors ILC Accelerator School May Eun-San Kim Kyungpook National University.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
Juhao Wu Feedback & Oct. 12 – 13, 2004 Juhao Wu Stanford Linear Accelerator Center LCLS Longitudinal Feedback with CSR as Diagnostic.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
Paul Emma Stanford Linear Accelerator Center July 2, 2002 Paul Emma Stanford Linear Accelerator Center July 2, 2002 High Brightness Electron Beam Magnetic.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
1 Alternative ILC Bunch Compressor 7 th Nov KNU (Kyungpook National Univ.) Eun-San Kim.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
NLC - The Next Linear Collider Project Tor Raubenheimer Beam Delivery System Design Differences American Linear Collider Physics Meeting SLAC January 8.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
PAC-2001, Chicago, IL Paul Emma SLAC SLAC Issues and R&D Critical to the LCLS UCLA LLNL.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
X-band Based FEL proposal
Emittance Growth in the SPPS Chicane P. Emma, P. Krejcik, C. O’Connell, M. Woodley; SLAC, H. Schlarb, F. Stulle; DESY.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Sara Thorin, MAX IV Laboratory
LCLS2sc MAD files: Injector to Bypass Line
Cutting Beam Horns in BC1
Short pulse, low charge LCLS operation
Linac possibilities for a Super-B
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
Limitations of Electron Beam Conditioning in Free-Electron Lasers
Review of Application to SASE-FELs
CSR Benchmark Test-Case Results
Progress activities in short bunch compressors
Overview Multi Bunch Beam Dynamics at XFEL
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
Time-Resolved Images of Coherent Synchrotron Radiation Effects
LCLS Longitudinal Feedback and Stability Requirements
CEPC Injector Damping Ring
Laser assisted emittance exchange to reduce the X-ray FEL size
ILC 3.2 km DR design based on FODO lattice (DMC3)
Simulation Calculations
ILC 3.2 km DR design based on FODO lattice (DMC3)
Final Focus optics for Possible New B-Line
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
LCLS RF Stability Requirements
Linac/BC1 Commissioning P
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Linac Diagnostics Patrick Krejcik, SLAC April 24, 2002
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Kicker and RF systems for Damping Rings
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
LCLS Longitudinal Feedback System and Bunch Length Monitor Juhao Wu Stanford Linear Accelerator Center LCLS DOE Review, February 08, 2006 LCLS longitudinal.
Electron mode A B C D > 4 GeV e- θ g e- DR α PS
Presentation transcript:

SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006 Longitudinal jitter tolerances 2D & 6D tracking CSR effects (none) RW-wakefields in the arc (none)

Short Bunch Generation in the South Arc 6 mm Damping Ring (ge  30 mm) 1.1 mm 0.36 mm SLAC Linac 1 GeV 30 GeV LCLS RTL 25 mm South Arc North Arc 1.1% 14 kA 25 mm rms 28.5 GeV 3.4 nC

SABER Accelerator Layout Q = 3.4 nC NDR 1.2 GeV z  6 mm   0.08 % LBCC L 14 m R56-76 mm LCLS GUN Sec. 2-9 L 810 m rf  -23.3° sectors 2-9 Sec. 10-20 L 936 m rf  0 sectors 10-20 bypass RTL LCLS RTL V  42 MV R560.59 m R5626 mm 1.2 GeV z  1.1 mm   1.0 % 9 GeV z  0.36 mm   2.0 % 28.5 GeV z  0.36 mm   1.1 % 28.5 GeV z  0.025 mm   1.1 % SLAC linac tunnel South Arc

szmin  18 mm Minimum bunch length achievable… Damping ring energy (1.2 GeV) Damping ring energy spread (0.08%) Damping ring bunch length (6 mm) energy in arc (28 GeV) max. energy spread in arc (1.1%) preservation of longitudinal emittance szmin  18 mm

Longitudinal Parameters Value Unit Bunch charge 3.4 nC DR electron energy 1.19 GeV DR initial rms bunch length 6.0 mm DR initial rms relative energy spread 0.08 % RTL Voltage 42 MV RTL R56 0.590* m RTL T566 1.05* Sec. 2-6 RF phase -23.3* deg LBCC Chicane energy 9.0 Sec. 10-20 RF phase Deg Bypass-line R56 13.2* S. Arc R56 13.0* S. Arc + bypass T566 94* Final electron energy 28.5 * sign convention is with head of bunch at z < 0 and j = 0 at RF crest

Particle tracking in 2D energy profile phase space temporal profile 0.08 % 6.0 mm 1.19 GeV 1.2 % 6.0 mm 1.19 GeV 1.0 % 1.19 GeV 1.1 mm 2.0 % 9.00 GeV 1.1 mm 2.0 % 0.32 mm 9.00 GeV 28.5 GeV 1.1 % 0.32 mm 25 mm 28.5 GeV 1.1 %

Final Energy and Peak Current Jitter vs Final Energy and Peak Current Jitter vs. DR Extraction Timing and Charge Jitter 0.1% relative energy jitter 20% peak current jitter 200 fs timing jitter DR ext. time  charge 

Final Energy and Peak Current Jitter vs RTL Phase and Voltage Jitter RTL voltage 

Final Energy and Peak Current Jitter vs 2-6 Phase and Voltage Jitter

Final Energy and Peak Current Jitter vs 10-20 Phase and Voltage Jitter

Tolerance Budget for RF and Beam Jitter All tolerances are rms and when applicable they apply to the average phase or voltage variations of the multiple-klystron linac section.

Track in 2D 1000 times with jitter based on tolerance budget

Twiss Parameters from 20-5 Bypass-Start to S. Arc Inst. Section Convert Yuri’s MAD file into Elegant for particle tracking with CSR

Bunch length (ss) and relative energy spread (sd) vs Bunch length (ss) and relative energy spread (sd) vs. S-position (with CSR) ss sd 25 mm

Tracking With and Without CSR sy = 4.33 mm without CSR sz = 25.1 mm sx = 3.05 mm sy = 4.36 mm with CSR sz = 24.9 mm sx = 3.08 mm

Tracking With Incoh. Sync. Rad. sy = 4.8 mm with ISR (only) sz = 25.2 mm sx = 4.3 mm E  28.6 GeV

1st order (no CSR) 2nd order (no CSR) Tracking in 1st & 2nd Order sy = 4.33 mm 1st order (no CSR) sz = 25.1 mm sx = 3.05 mm sy = 5.59 mm 2nd order (no CSR) sz = 26.3 mm sx = 3.53 mm (Gaussian fits)

De/ex  6.7% (6% due to ISR) min. sz CSR tracking through sec-10 chicane with SABER beam (1.15 mm  320 mm) sz = 1.15 mm 1D calculation De/ex  6.7% (6% due to ISR) over-compression min. sz sz = 340 mm B1 B2 B3 B4

plot-limits are chamber walls Sector-10 chicane energy spread is larger in SABER than in SPPS (1.6  2%) SPPS (x-y at chicane center) 1.6% (11s) SPPS 1.6 % plot-limits are chamber walls SABER 1% 2.0 % Chicane dipole field quality tolerances may be strained

AC Resistive-Wall Wake for Aluminum Chamber in South Arc (a = 5.5 mm) no RW-wake with RW-wake Resistive-wall wake (AC) effect is small: Dz/sz  0.5%

SABER without a bypass (1-km more wake) sE/E  1.5% E  28.5 GeV sz  28 mm

Damping Ring Energy Reduced to 0.9 GeV (from 1.2 GeV) (damping time still sufficient at 30 Hz) sE/E  1.1% RTL R56 = 460 mm ? sz  11 mm

Send LCLS Beam into South Arc (no by-pass) sE/E  0.2% E  13.6 GeV gex,y  1 mm ? No CSR, No RW-Wake, etc. sz  2.6 mm (8 fsec rms) No possibility to do this in present design