多体共鳴状態の境界条件によって解析した3α共鳴状態の構造

Slides:



Advertisements
Similar presentations
Unstable Nuclei and Many-Body Resonant States Unstable Nuclei and Many-Body Resonant States Kiyoshi Kato Nuclear Reaction Data Centre, Faculty of Science,
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Extended optical model analyses of elastic scattering and fusion cross sections for 6, 7 Li Pb systems at near-Coulomb-barrier energies by using.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Linking Transitions (and Search for Superintruders) in the A  80 Region of Superdeformation Nilsson Conf. Lund, Sweden 17 June 2005 C. J. Chiara, D. G.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Faddeev three-body calculation of triple- alpha reaction Souichi Ishikawa Hosei University, Japan 1 The Fifth Asia-Pacific Conference on Few-Body Problems.
What is a resonance? K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (1)
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Nonlocalized Clustering in Nuclei Hisashi Horiuchi RCNP, Osaka Univ., Osaka 1. Introduction 2. Hoyle state and 3α condensate-like structure 3. Localized.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Pairing Correlation in neutron-rich nuclei
Extracting β4 from sub-barrier backward quasielastic scattering
Hadron excitations as resonant particles in hadron reactions
Description of nuclear structures in light nuclei with Brueckner-AMD
Two-body force in three-body system: a case of (d,p) reactions
Satoshi Nakamura (Osaka University)
Masahiro Isaka (RIKEN)
Kaon Absorption from Kaonic Atoms and
Resonance and continuum in atomic nuclei
Open quantum systems.
Three-body hadronic molecules.
Akihiro Tohsaki Suzuki Coop. RCNP, Osaka University
Triple-Humped Fission Barrier and Clusterization in the Actinide Region A. Krasznahorkay Inst. of Nucl. Res. of the Hungarian Acad. of Sci. (ATOMKI) Debrecen,
Exotic nuclei beyond 132Sn: where do we stand?
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Yokohama National University Takenori Furumoto
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Five-body calculation of heavy pentaquark system
Daejeon16 for light nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
E. Hiyama (Kyushu Univ./RIKEN)
Nuclear excitations in relativistic nuclear models
d*, a quark model perspective
Deeply Bound Mesonic States -Case of Kaon-
In-medium properties of the omega meson from a measurement of
Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu
Rotation and alignment of high-j orbitls in transfermium nuclei
Cluster and Density wave --- cluster structures in 28Si and 12C---
少数体ケイオン核の課題 August 7, 2008 Y. Akaishi T. Yamazaki, M. Obu, M. Wada.
Signature of L(1405) in K-dpSn reaction
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
Few-body approach for structure of light kaonic nuclei
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
A self-consistent Skyrme RPA approach
R. Lazauskas Application of the complex-scaling
Presentation transcript:

多体共鳴状態の境界条件によって解析した3α共鳴状態の構造 C. Kurokawa1 and K. Kato2 Meme Media Laboratory, Hokkaido Univ., Japan1 Div. of Phys., Grad. Sch. of Sci., Hokkaido Univ., Japan2

Theoretical studies of 12C   D.M.Brink in Proceedings of the Fifteen Solvay Conference on Physics (19070) ○Microscopic 3α model (RGM・GCM・OCM)   Y.Fukushima and M.Kamimura in Proceedings of the International Conference on Nuclear Structure (1977)   M.Kamimura, Nucl. Phys. A351(1981),456 Y.Fujiwara, H.Horiuchi, K.Ikeda, M.Kamimura, K.Katō, Y.Suzuki and E.Uegaki, Prog Theor. Phys. Suppl.    68 (1980)60. E.Uegaki, S.Okabe, Y.Abe and H.Tanaka, Prog. Theor. Phys. 57(1977)1262; 59(1978)1031; 62(1979)1621. H.Horiuchi, Prog. Theor. Phys. 51(1974)1266; 53(1975)447. K.Fukatsu, K.Katō and H.Tanaka, Prog. Theor. Phys.81(1988)738. ○3α+p3./2Closed shell N.Takigawa, A.Arima, Nucl. Phys. A168(1971)593. N.Itagaki Ph.D thesis of Hokkaido University (1999) Y.Kanada-En’yo, Phys. Rev. Lett. 24(1998)5291. ○Deformation (Mean-Field) G.Leander and S.E.Larsson, Nucl. Phys.A239(1975)93. ○Faddeev Y.Fujiwara and R.Tamagaki Prog. Theor. Phys. 56(1976)1503. H.Kamada and S.Oryu, Prog. Theor. Phys 76(1986)1260.         α α α Γ=34keV 31- α 02+ 3 Γ=8.7eV α α 01+ Excited states of cluster states?

Situation around Ex= 10 MeV Energy level of 12C a 02+ : l=0 a L=0 a Alpha-condensed state 0+, 2+ A.Tohsaki et al., PRL87(2001)192501 Can 3αModel reproduce both of the 22+ and the 03+ states ? What kind of structure dose the 03+ state have ? Why 03+ has such a large width ? 0+ : Er=2.7+0.3 MeV, G= 2.7+0.3 MeV 2+ : Er=2.6+0.3 MeV, G= 1.0+0.3 MeV [Ref.]: M.Itoh et al., NPA 738(2004)268 [Ref.] E.Uegaki et al.,PTP57(1979)1262 Boundary condition for three-body resonances Analysis of decay widths

Our strategy In order to taking into account the boundary condition for three-body resonances, we adopted the methods to 3 Model; Complex Scaling Method (CSM) [Ref.] J.Aguilar and J.M.Combes, Commun. Math. Phys., 22(1971),269 E.Balslev and J.M.Combes, Commun. Math. Phys., 22(1971),280 Analytic Continuation in the Coupling Constant [Ref.] V.I.Kukulin, V.M.Krasnopol’sky, J.Phys. A10(1977), combined with the CSM (ACCC+CSM) [Ref.] S.Aoyama PRC68(2003),034313 Both enables us to obtain not only resonance energy but also total decay width

Model : 3  Orthogonality Condition Model (OCM) folding for Nucleon-Nucleon interaction(Nuclear+Coulomb) [Ref.]: E. W. Schmid and K. Wildermuth, Nucl. Phys. 26 (1961) 463 , -parity ) μ=0.15 fm-2 : OCM [Ref.]: S.Saito, PTP Supple. 62(1977),11 Phase shifts and Energies of 8Be, and Ground band states of 12C a1 a2 a3 c=3 a1 a2 a3 c=2 a1 a2 a3 c=1 , [Ref.]: M.Kamimura, Phys. Rev. A38(1988),621

Methods for treatment of three-body resonant states CSM It is sometimes difficult for CSM   to solve states with quite large   decay widths due to the limitation   of the scaling angle  and finite basis states. In order to search for the broad 0+ state, we employed … ACCC+CSM 2θ Exp. Broad state Im(k) k δ→0 : Atractive potential with < 0 Re(k) Resonance

Energy levels obtained by CSM and ACCC+CSM G= 0.375+0.040 MeV Γ=0.12 MeV (2+) 0+ : Er=2.7+0.3 MeV, G= 2.7+0.3 MeV 2+ : Er=2.6+0.3 MeV, G= 1.0+0.3 MeV [Ref.]: M.Itoh et al., NPA 738(2004)268 03+: Er=1.66 MeV, Γ=1.48 MeV 22+: Er=2.28 MeV, Γ=1.1 MeV 3α Model reproduce 22+ and 03+ in the same energy region by taking into account the correct boundary condition ACCC+CSM E.Uegaki et al.,PTP(1979)

Structures of 0+ states through Amplitudes Wave function of 0+ states Y (12C) Jp=0+ = al=0,L=0 j0,0 + al=2,L=2 j2,2 + al=4,L=4 j4,4 8Be jl,L= [ 8Be (l) x L ] a l a al,L2 : Channel Amplitudes L a Channel Amplitudes of 01+, 02+ and 04+ E [MeV] Rr.m.s. [fm] a0,02 a2,22 a4,42 Er G Re. Im. 01+ -7.29 2.36 0.364 0.382 0.254 02+ 0.76 2.4x10-3 4.29 0.29 0.775 0.033 0.149 -0.019 0.076 -0.014 04+ 4.58 1.1 3.26 0.97 0.499 0.170 0.307 -0.017 0.194 -0.153

Feature of the broad 3rd 0+ state Channel amplitudes as a function of  8Be a l=0 a L=0 2 2 Dominated 2 a Similar property to 02+( Rr.m.s= 4.29 fm) Re(Rr.m.s) (d= -140): 5.44 fm Large component of a0,02 makes such the large width. Wave function of 03+ shows similar properties to 02+. 03+ is considered as an excited state of 02+. Higher nodal state of 02+ ?

Summary of obtained 0+ states 04+ 03+ L=0 but higher nodal ? I=0 I=0 L=0 02+ r.m.s.=4.29 fm

Structure of the 04+ state 4th 0+ state ; Large component of high angular momentum compared with 2nd 0+ a0,02 =0.499,  a2,22 =0.307, a4,42 =0.194 Total decay width is sharp: Er=4.58 MeV, =1.1 MeV 3αOCM with SU(3) base : K.Kato, H.Kazama, H.Tanaka, PTP 77(1986),185. Component of linear-chain configuration: 56% AMD: Y.Kanada-En’yo, nutl-th/0605047. FMD: T.Neff, H.Feldmeier, NPA 738(2004), 357. Linear chain like structure is found α α α

Probability Density of 1st 0+ and 4th 0+ states (Preliminary) r1 = r2 = r q12 01+ r [fm] 04+ q12 q12

Summary and Future work We solve states above 3αthresold energy taking into account the boundary condition for three-body resonant states. Obtained resonance parameters of many J states reproduce experimental data well. We obtained broad 3rd 0+ state near the 2nd 2+ state. The state has similar structure to the 2nd 0+ state. It is thus expected to be an excited state of 2nd 0+. The 4th 0+ state has large component of high angular momentum channel, [8Be (2+) x L=2], and has a sharp decay width. These features reflect the linear-chain like structure of 3αclusters. Members of rotational band built upon the 4th 0+ state ? How do these states contribute to the real energy ? To investigate it we calculate the Continuum Level Density in the CSM and partial decay widths to 8Be(0+, 2+, 4+)+α in feature. [Ref.] A.T. Kruppa and K. Arai, PLB 431(1998)237 R. Suzuki, T. Myo, and K. Kato, PTP 113 (2005) 1273

Probability Density of 0+ states 02+ 04+ q12

Contributions from resonant states to real energy Continuum Level Density (CLD) Δ(E) [Ref.] S.Shomo, NPA 539 (1992) 17. δl: phase shift Discretization with a finite number N of basis functions [Ref.] A.T. Kruppa and K. Arai, PLB 431(1998)237. Smoothing technique is needed, but results depend on smoothing parameter.

CLD in the Complex Scaling Method [Ref. ] R. Suzuki, T. Myo, and K CLD in the Complex Scaling Method [Ref.] R. Suzuki, T. Myo, and K. Kato, PTP 113 (2005) 1273 Bound state Resonance Continuum  ER, εc(θ) have complex eigenvalues in CSM CLD in CSM: Smoothing technique is not needed

Application to 3α system CLD of 3αsystem α2 α1

Continuum Level Density: 0+ states 8Be(0+) +α 8Be(2+) +α E [MeV]

Subtraction of contribution from 8Be+α α2 α1- α2: resonance + continuum (α1α2)- α3: continuum α1 α3 α1- α2: continuum (α1α2)- α3: continuum

Contributions from 8Be+α are subtracted ‘ 02+ 04+ 03+

Subtraction of contribution from 8Be+α

Search for broad 0+ state with δ= -50 MeV δ= -110 MeV δ= -150 MeV 03+ 05+ 04+ 04+ 04+ 05+ δ= -200 MeV 03+ δ= -250 MeV 04+ 05+

Trajectories of the broad 03+ state Complex-Energy plane Complex-Momentum plane Obtained resonance parameter Present calc. Exp. data Er (MeV) 1.66 2.73 + 0.3 Γ (MeV) 1.48 2.7 + 0.3

Methods for treatment of three-body resonant states Complex Scaling Method (CSM) It is sometimes difficult for CSM to solve state with a quite large decay width due to the limitation of the scaling angle . In order to search for the broad 0+ state, we employed … Analytic Continuation in the Coupling Constant combined with the CSM (ACCC+CSM) CSM ACCC+CSM Im(k) k Im(k) k Branch cut Bound state δ→0 Re(k) Re(k) q Anti-bound state Resonance Resonance