Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu

Similar presentations


Presentation on theme: "Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu"— Presentation transcript:

1 Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu
Yang Sun

2

3

4 Classical Quadrupole Surface Vibration

5

6 Tidal wave

7 Yrast line of 5D-harmonic oscillator
In the rotating frame: small oscillations around E I qp. excitations Tidal waves

8 Anharmonic oscillator
E(5) like I Anharmonic oscillator

9 I-1/2 rotor tidal wave vibrator

10 N= No good vibrator!

11

12 Theoretical methods Fix the angular momentum or rotational frequency
Find the static shape – use a mean field method Angular momentum projection: Projected shell model Cranking model: semiclassical treatment of angular momentum

13 Low-spin waves

14 F. Courminboeuf et al. PRC 63 (00) 014305

15 QQ model +cranking Energy minimum (self-consistency) at: harmonic

16 Cranking model B(E2,I->I-2)[(eb)^2] I exp calc tidal wave 0.09 0.07
AMR B(E2,I->I-2)[(eb)^2] I exp calc tidal wave antimagnetic rotor Experiment: M. Piiparinen et al. NPA565 (93) 671 F. Courminboeuf et al. PRC 63 (00) R. Clark et al. private communication

17 Projected shell model

18 Monopole Pairing+Quadrupole Pairing+QQ model
Zero quasiparticle version: Two quasiparticle version: Diagonalize H in the basis Minimize lowest energy

19

20 Projected shell model B(E2,I->I-2)[(eb)^2] I exp calc tidal wave
antimagnetic rotor AMR Tidal wave

21 Antimagnetic rotor

22 Geometrical model for an antimagnetic rotor

23 A. Simons et al. Phys. Rev. Lett. 91, 162501 (2003)

24 High-spin waves Combination of Angular momentum reorientation
Triaxial deformation

25 yrast D. Cullen et. al

26

27

28 25 26 TAC 27 28 Line distance: 20keV 29 30

29

30

31 Line distance: 200 keV

32 Less favored vibrations Tidal wave Mixed with p-h excitations

33 s o t m K=0 0 8 14 21 24 i m t s o K=25 i (130 ns) P. Chowdhury et al
NPA 484, 136 (1988) i m t s o

34 Tidal waves Yrast mode in soft nuclei at low and high spin
Angular momentum generated by shape change at nearly constant angular velocity. Shape change: Axial, triaxial quadrupole, orientation, octupole … Rotating mean field gives a reliable microscopic description No new parameters Experimental rotational frequency well defined

35

36

37 Cranking model B(E2,I->I-2)[W.u.] I exp calc tidal wave
AMR B(E2,I->I-2)[W.u.] I exp calc tidal wave 23.0 (15) 18 (6) 43 (20) 56 antimagnetic rotor 39 (2) 25 29 (3) 25

38 Projected shell model B(E2,I->I-2)[W.u.] I exp calc tidal wave
23.0 (15) 18 (6) 33 (20) 41 antimagnetic rotor 39 (2) 36 29 (3) 16 25 AMR Tidal wave


Download ppt "Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu"

Similar presentations


Ads by Google