Notes 16-5 Obj. 16.9, 16.10, 16.11. 16.9 Acid-Base Properties of Salt Solutions A.) Reactions of Anions with Water 1.) Anions are bases. 2.) As such,

Slides:



Advertisements
Similar presentations
Bases Sodium hydroxide Preferred IUPAC name Systematic name
Advertisements

Updates Assignment 05 is is due Monday, Mar. 05 (in class) Midterm 2 is Thurs., March 15 –Huggins 10, 7-8pm –For conflicts: ELL 221, 6-7pm (must arrange.
Chapter 1611 To quantify the relationship between strength of acid and conjugate base, recall multistep equilibria: Reaction 1 + reaction 2 = reaction.
Acid - Base Equilibria AP Chapter 16. Acids and Bases Arrhenius acids have properties that are due to the presence of the hydronium ion (H + ( aq )) They.
Acids and Bases Calculating Percent Ionization Percent Ionization =  100 In this example [H 3 O + ] eq = 4.2  10 −3 M [HCOOH] initial = 0.10 M [H 3 O.
Chapter 16 Acid-Base Equilibria. The H + ion is a proton with no electrons. In water, the H + (aq) binds to water to form the H 3 O + (aq) ion, the hydronium.
Acids and Bases Entry task: Feb 4 th Monday Sign off on Ch. 16 sec
Basic concepts: Acid-Base chemistry & pH 1.Recognizing acid/base and conjugate base/acid 2.Calculation of pH, pOH, [H 3 O + ], [OH - ] 3.Calculating pH.
Copyright McGraw-Hill Chapter 16 Acids and Bases Insert picture from First page of chapter.
Acids and Bases Chapter 16 Acids and Bases John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The Central.
SAMPLE EXERCISE Calculating Ka or Kb for a Conjugate Acid-Base Pair
Acids and Bases Topics to be covered: Definitions of acids and bases; Bronsted’s conjugate acid-base pairs concept; Determination of [H 3 O + ], [OH -
Acids and Bases © 2009, Prentice-Hall, Inc. Chapter 16 Acids and Bases John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry, The.
Chapter 16 Acid–Base Equilibria Lecture Presentation Dr. Subhash C Goel South GA State College Douglas, GA © 2012 Pearson Education, Inc.
Chapter 16 Acid–Base Equilibria
Acids and Bases Chapter 16 Acids and Bases John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The Central.
Chapter 16 Acids and Bases. © 2009, Prentice-Hall, Inc. Some Definitions Arrhenius – An acid is a substance that, when dissolved in water, increases the.
Properties of acids Electrolytes: conduct electricity React to form salts Change the color of an indicator Have a sour taste.
Chapter 16: Acid-Base Equilibria Jennie L. Borders.
Unit 6 - Chpt 14&15 - Acid/Base Acid basics, strengths, etc. pH scale, calculations Base basics Polyprotic acids, Acid/Base properties of salts, hydrolysis,
Acids and Bases  Arrhenius ◦ Acid:Substance that, when dissolved in water, increases the concentration of hydrogen ions. ◦ Base:Substance that, when dissolved.
Prentice Hall ©2004 Chapter 14 Aqueous Equilibria: Acids and Bases.
ACID-BASE TITRATIONS PART 3. WHAT DOES THE TITRATION GRAPH TELL? If we have a solid that dissolves: A 2 B (s)  2 A (aq) + B (aq) Then K sp is calculated.
Acids-Bases Part I Arrhenius: Acid…. A substance that increases the hydrogen ion, H +, concentration when dissolved in H 2 O. Eg. HCl, H 2 SO 4, HC 2 H.
14.1 Intro to Acids and Bases 14.2 Acid Strength 14.3 pH Scale
What are acids and bases?
Acid-Base Equilibria. Acids Bases Sour taste React with active metals to release hydrogen gas Change the color of indicators Bitter taste Feel slippery.
Acids and Bases Unit 18 Acid-Base Equilibria: Buffers & Hydrolysis Dr. Jorge L. Alonso Miami-Dade College – Kendall Campus Miami, FL CHM 1046: General.
pH of salt solutions 1.Salts derived from strong acids and strong bases These consist of cations from strong bases and the anions from.
ACIDS & BASES Arrhenius Theory 1. in aqueous solution 2. Acid: produces H + 3. Base: produces OH -
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid Base Equilibrium CH 16. Some Definitions Arrhenius Acid:Substance that, when dissolved in water, increases the concentration of hydrogen ions. Base:Substance.
Acids and Bases © 2009, Prentice-Hall, Inc. Chapter 16 Acids and Bases John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry, The.
Chapter 16 Acid-Base Equilibria Acids and Bases: A Brief Review.
Acids and Bases Chapter 16 Acids and Bases. Acids and Bases Some Definitions Arrhenius  ________________:Substance that, when dissolved in water, increases.
1 Chapter 14 Acid/Base Equilibrium AP Chemistry Unit 10.
Acids and Bases © 2009, Prentice-Hall, Inc. Chapters 15 &16 Acids and Bases.
Makeup midquarter exams Wed., Mar 9 5:30-7:30 pm 131 Hitchcock Hall You MUST Sign up in 100 CE Please do so as soon as possible.
Nearly all salts are strong electrolytes. Therefore, salts exist entirely of ions in solution. Acid-base properties of salts are a consequence of the reaction.
Acids-Bases Part I Arrhenius: Acid…. A substance that increases the hydrogen ion, H +, concentration when dissolved in H 2 O. Eg. HCl, H 2 SO 4, HC 2 H.
Chapter 16 Acids and Bases. Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water.
Acids, Bases, and Acid-Base Equilibria. Acid-Base Theories and Relative Strengths Arrhenius Theory of acids and bases acid – produces H + ions base –
CHE1102, Chapter 15 Learn, 1 Chapter 15 Acids and Bases, A Molecular Look.
  Acids  Produce H + ions when dissolved in water  Ionize into H + ions and negative ion  (Ex. HCl, HBr)  Bases  Produce OH - ions when dissolved.
CHAPTER 16: ACID BASE EQUILIBRIA Wasilla High School
COMMON ION EFFECT LEWIS ACIDS & BASES [ ]
Acids and Bases Chapter 16 Acids and Bases. Acids and Bases Some Definitions Arrhenius  Acid:Substance that, when dissolved in water, increases the concentration.
Chapter 16 Sections 8-9. © 2009, Prentice-Hall, Inc. K a and K b K a and K b are related in this way: K a  K b = K w Therefore, if you know one of them,
Chapter 15 Acids and Bases, A Molecular Look
Acids and Bases Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Neutralization H+1 + OH-1  HOH
Acids and Bases: A Brief Review
Acids and Bases © 2009, Prentice-Hall, Inc..
Common Ion Effect Lewis Acids & Bases
Acids and Bases.
Chapter 16 Section 10 and 11.
Chapter 16 Acids and Bases
Chapter 16 Acids and Bases
Unit 9 Acid–Base Equilibria
Chapter 16 Acids and Bases
Titration Curves.
Chapter 16 Acid–Base Equilibria
Chapter 16 Acid–Base Equilibria
Acid-Base Equilibria Chapter 16.
ACIDS and BASES.
Chapter 16 Acids and Bases
Chapter 16 Acids and Bases
Chapter 16 Acids and Bases
Presentation transcript:

Notes 16-5 Obj. 16.9, 16.10, 16.11

16.9 Acid-Base Properties of Salt Solutions A.) Reactions of Anions with Water 1.) Anions are bases. 2.) As such, they can react with water in a hydrolysis reaction to form OH - and the conjugate acid: X - (aq) + H 2 O (l) HX (aq) + OH - (aq)

B.) Reactions of Cations with Water 1.) Cations with acidic protons (like NH 4 + ) will lower the pH of a solution. 2.) Most metal cations that are hydrated in solution also lower the pH of the solution. (cations cannot be +1, or group 1 or 2)

3.) Attraction between nonbonding electrons on oxygen and the metal causes a shift of the electron density in water. 4.) This makes the O-H bond more polar and the water more acidic. 5.) Greater charge and smaller size make a cation more acidic.

C.) Effect of Cations and Anions 1.An anion that is the conjugate base of a strong acid will not affect the pH. 2.An anion that is the conjugate base of a weak acid will increase the pH. 3.A cation that is the conjugate acid of a weak base will decrease the pH.

4.Cations of the strong Arrhenius bases will not affect the pH. 5.Other metal ions will cause a decrease in pH. 6.When a solution contains both the conjugate base of a weak acid and the conjugate acid of a weak base, the affect on pH depends on the K a and K b values.

Sample Exercise Determining Whether Salt Solutions Are Acidic, Basic, or Neutral Determine whether aqueous solutions of each of the following salts will be acidic, basic, or neutral: (a) Ba(CH 3 COO) 2, (b) NH 4 Cl, (c) CH 3 NH 3 Br, (d) KNO 3, (e) Al(ClO 4 ) 3.

Sample Exercise Determining Whether Salt Solutions Are Acidic, Basic, or Neutral In each of the following, indicate which salt in each of the following pairs will form the more acidic (or less basic) M solution: (a) NaNO 3, or Fe(NO 3 ) 3 ; (b) KBr, or KBrO; (c) CH 3 NH 3 Cl, or BaCl 2, (d) NH 4 NO 2, or NH 4 NO 3. Practice Exercise

Sample Exercise Predicting Whether the Solution of an Amphiprotic Anion is Acidic or Basic Predict whether the salt Na 2 HPO 4 will form an acidic solution or a basic solution on dissolving in water.

Sample Exercise Predicting Whether the Solution of an Amphiprotic Anion is Acidic or Basic Predict whether the dipotassium salt of citric acid (K 2 HC 6 H 5 O 7 ) will form an acidic or basic solution in water (see Table 16.3 for data). Practice Exercise

16.10 Acid-Base Behavior and Chemical Structure D.) Factors Affecting Acid Strength 1.) The more polar the H-X bond and/or the weaker the H-X bond, the more acidic the compound. 2.) So acidity increases from left to right across a row and from top to bottom down a group.

3.) In oxyacids, in which an -OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid.

4.) For a series of oxyacids, acidity increases with the number of oxygens.

Sample Exercise Predicting Relative Acidities from Composition and Structure Arrange the compounds in each of the following series in order of increasing acid strength: (a) AsH 3, HI, NaH, H 2 O; (b) H 2 SO 4, H 2 SeO 3, H 2 SeO 4.

Sample Exercise Predicting Relative Acidities from Composition and Structure In each of the following pairs choose the compound that leads to the more acidic (or less basic) solution: (a) HBr, HF; (b) PH 3, H 2 S; (c) HNO 2, HNO 3 ; (d) H 2 SO 3, H 2 SeO Practice Exercise

5.) Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic.

© 2009, Prentice-Hall, Inc Lewis Acids and Bases A.) Lewis acids are defined as electron-pair acceptors. B.) Atoms with an empty valence orbital can be Lewis acids.

© 2009, Prentice-Hall, Inc. C.) Lewis bases are defined as electron-pair donors. D.) Anything that could be a Brønsted-Lowry base is a Lewis base. E.) Lewis bases can interact with things other than protons, however.

Sample Integrated Exercise Putting Concepts Together Phosphorous acid (H 3 PO 3 ) has the following Lewis structure (a) Explain why H 3 PO 3 is diprotic and not triprotic. (b) A 25.0-mL sample of a solution of H 3 PO 3 is titrated with M NaOH. It requires 23.3 mL of NaOH to neutralize both acidic protons. What is the molarity of the H 3 PO 3 solution? (c) The original solution from part (b) has a pH of Calculate the percent ionization and K a1 for H 3 PO 3, assuming that K a1 >> K a2. (d) How does the osmotic pressure of a M solution of HCl compare qualitatively with that of a M solution of H 3 PO 3 ? Explain.