Fourth Generation Leptons Linda Carpenter April 2011.

Slides:



Advertisements
Similar presentations
Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
Advertisements

The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Recent Results on the Possibility of Observing a Standard Model Higgs Boson Decaying to WW (*) Majid Hashemi University of Antwerp, Belgium.
Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
3.Phenomenology of Two Higgs Doublet Models. Charged Higgs Bosons.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Summary of Results and Projected Sensitivity The Lonesome Top Quark Aran Garcia-Bellido, University of Washington Single Top Quark Production By observing.
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Susy05, Durham 21 st July1 Split SUSY at Colliders Peter Richardson Durham University Work done in collaboration with W. Kilian, T. Plehn and E. Schmidt,
LHC pp beam collision on March 13, 2011 Haijun Yang
Higgs Searches at LEP2 E. Kneringer University of Innsbruck / Austria Collaboration LAKE LOUISE WINTER INSTITUTE Electroweak Physics February 1999.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
Discovery Potential for MSSM Higgs Bosons with ATLAS Johannes Haller (CERN) on behalf of the ATLAS collaboration International Europhysics Conference on.
1 Viktor Veszprémi (Purdue University, CDF Collaboration) SUSY 2005, Durham Search for the SM Higgs Boson at the CDF Experiment Search for the SM Higgs.
Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) Introduction to Single-Top The measurement.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
Charged Higgs Results from Tevatron Sudeshna Banerjee Tata Institute of Fundamental Research Mumbai, India For CDF and DØ Collaborations Fermilab, Chicago.
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
FNAL Academic Lectures – May, –Tevatron -> LHC Physics 3 –Tevatron -> LHC Physics 3.1 QCD - Jets and Di - jets 3.2 Di - Photons 3.3 b Pair Production.
Z AND W PHYSICS AT CEPC Haijun Yang, Hengne Li, Qiang Li, Jun Guo, Manqi Ruan, Yusheng Wu, Zhijun Liang 1.
W+jets and Z+jets studies at CMS Christopher S. Rogan, California Institute of Technology - HCP Evian-les-Bains Analysis Strategy Analysis Overview:
Sensitivity Prospects for Light Charged Higgs at 7 TeV J.L. Lane, P.S. Miyagawa, U.K. Yang (Manchester) M. Klemetti, C.T. Potter (McGill) P. Mal (Arizona)
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
1 ttbar Cross-Section Studies D. Jana*, M. Saleem*, F. Rizatdinova**, P. Gutierrez*, P. Skubic* *University of Oklahoma, **Oklahoma State University.
Alex Melnitchouk DPF conference - May Search for Fermiophobic Higgs in the h   Channel DPF 2002, Williamsburg Alex Melnitchouk (Brown University)
Searches for the Standard Model Higgs at the Tevatron presented by Per Jonsson Imperial College London On behalf of the CDF and DØ Collaborations Moriond.
December 3rd, 2009 Search for Gluinos and Squarks in events with missing transverse momentum DIS 2013: XXI. International workshop on Deep-Inelastic Scattering.
1 EPS2003, Aachen Nikos Varelas ELECTROWEAK & HIGGS PHYSICS AT DØ Nikos Varelas University of Illinois at Chicago for the DØ Collaboration
Jonathan HaysSearches with Leptons at the Tevatron Searches for New Physics With Leptons at the Tevatron Jonathan Hays Imperial College London On behalf.
Alternatives: Beyond SUSY Searches in CMS Dimitri Bourilkov University of Florida For the CMS Collaboration SUSY06, June 2006, Irvine, CA, USA.
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
RECENT RESULTS FROM THE TEVATRON AND LHC Suyong Choi Korea University.
Signatures of lepton-jet production at the LHC Eva Halkiadakis (Rutgers University) with Adam Falkowski, Yuri Gershtein (Rutgers University) Josh Ruderman.
RHIC-PV, April 27, 2007 M. Rijssenbeek 1 The Measurement of W ’s at the CERN and FNAL hadron colliders W ’s at RHIC ! W ’s at CERN – UA2 W ’s at FNAL -
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Higgs in the Large Hadron Collider Joe Mitchell Advisor: Dr. Chung Kao.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
Search for Pair Produced Stops Decaying to a Dileptonic Final State at CMS David Kolchmeyer.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Itay Yavin Lepton JetsSLAC Lepton Jets Itay Yavin Princeton University M. Baumgart, C. Cheung, J. T. Ruderman, L. T. Wang and I. Y [hep-ph]
Eric COGNERAS LPC Clermont-Ferrand Prospects for Top pair resonance searches in ATLAS Workshop on Top Physics october 2007, Grenoble.
LHC, Prague, July 2003Filip Moortgat, University of Antwerpen LHC Praha 2003 Detection of MSSM Higgs bosons using supersymmetric decay modes.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
Jieun Kim ( CMS Collaboration ) APCTP 2012 LHC Physics Workshop at Korea (Aug. 7-9, 2012) 1.
The study of q q production at LHC in the l l channel and sensitivity to other models Michihisa Takeuchi ~~ LL ± ± (hep-ph/ ) Kyoto Univ. (YITP),
Bounds on light higgs in future electron positron colliders
Determining the CP Properties of a Light Higgs Boson
15/11/11 LHCb Liverpool Meeting
Report from SUSY working group
Measurement of SM V+gamma by ATLAS
Establishing Standard LHC
Search for Dark Matter in Jets plus MET final state for Non-therma Dark Matter model Using Data From Proton-Proton Collisions at √s = 13TeV Sonaina Undleeb.
Status of FCNC top decays(t->γ+q ,t->Z +q )
SUSY Particle Mass Measurement with the Contransverse Mass Dan Tovey, University of Sheffield 1.
Higgs → t+t- in Vector Boson Fusion
CMS Physics Analysis in China
Jessica Leonard Oct. 23, 2006 Physics 835
Using Single Photons for WIMP Searches at the ILC
mSUGRA SUSY Searches at the LHC
Searches at LHC for Physics Beyond the Standard Model
ttbar Cross-Section Studies leading to ttbar Resonance
Tevatron Searches for Beyond-SM Higgs
Search for Invisible Decay of Y(1S)
SUSY SEARCHES WITH ATLAS
Presentation transcript:

Fourth Generation Leptons Linda Carpenter April 2011

Work with Arvind Rajaraman, and Daniel Whiteson arXiv: v1 [hep-ph] arXiv: [hep-ph] arXiv: [hep-ph] arXiv: [hep-ph] arXiv: [hep-ph]

Most General Fourth Generation Lepton Sector consists of a charged lepton with a Dirac Mass, and a neutrino with a Majorana and a Dirac Mass The neutrino mass matrix is Diagonalizing one gets

Define two mass eigen states With mixing angle And masses

Leptons couple to the charged and neutral currents where

Possible Neutrino Event

Mass bounds are different in the case that the lightest leptons is stable or unstable.

In the case of unstable lightest neutrino, mass bounds are given by LEP 2 From the process

For mixed mass case the neutrino production cross section for the lightest state neutrinos is Suppressed by the fourth power of the mixing angle. Heavy state pair production and heavy light production are suppressed by phase space. In this way we can lower the mass bound.

LEP search Relied on looking for 2 well isolated leptons of the same flavor. Required isolation cone of 30 degrees around the hard leptons Looked for 60 GeV of hadronic activity, mostly sensitive to hadronic decay of the Ws.

Assuming all 4 th gen neutrinos decay to a single final lepton flavor, generate events with MADGRAPH, decay using BRIDGE, and shower events through PYTHIA to get estimated efficiencies for mixed mass search

The only bound on stable neutrinos is from the Z pole measurement of the Z invisible width. The Z invisible width may be corrected by 21 MeV* PDG quotes 45 GeV for Dirac type and 39.9 for Majorana type stable neutrinos, (The Lower Majorana bound is from a phase space factor) * (Particle Data Group), J. Phys. G 37, (2010) P. Abreu et al. [ DELPHI Collaboration ], Phys. Lett. B274, (1992)

If there are 2 Majorana neutrino states the stable neutrino mass bound may be lowered even further Recall that the Neutrino couplings to the Z boson is suppressed by powers of the mixing angle

Consider production processes for neutrinos from the Z. The first process above contributes to the invisible width and the second to the total width. To maximize the invisible width one wants to compress the neutrinos, however if the N 2 states are too light one compromises the total width.

Existing SUSY searches may already constrain this scenario at LEP, as squark searches look for the jets plus missing energy signal. One considers N 2 pair production. The relevant process is

Consider a search along the lines of the acoplanar jets search pre-selection for LEP’s SUSY squark search. The cuts are as follows The background is dominated by diphoton events.

Calculated acceptance for cuts following those of squark SUSY search pre-selection

Hadron Collider Searches for 4 th Generation Leptons

a) The case of unstable lightest neutrino

Looking for unstable leptons, One has events with many final state particles particles. One must have something good to trigger on. Luckily, the signal for Majorana neutrinos is like sign dileptons, which is a very distinctive signal.

Searches for a charged lepton neutrino pair are easier than neutrino pair production b.c. one may produce a lepton and neutrino from a W rather than a neutrino pair from a Z. The resulting cross section is almost two order of magnitude higher than neutrino pair production from a Z.

LHC event producing L N 1 pair

We use the following cuts

Benchmark point m N =100 GeV m L =200GeV Events vs. Number of jets

The production cross section is high, around.1 pb Backgrounds are low for like sign di-lepton events and are mostly from WZ or W photon or W+jets and ttbar with mistagged leptons.

Production cross section

Plot of Plot of Acceptance Note that acceptance drops as N1 decreases as its decay products get soft

Exclusion with 1 inverse fb at 7TeV

Possible exclusion at 95% c.l. for entire mass plane of charged lepton masses up to 250 GeV with 1 inverse fb at 7TeV. Maximum reach into the mass plane of 350 GeV for charged lepton masses. Jet distribution can give a hint that the signal is indeed a charged lepton plus neutrino

b) The Case of stable lightest neutrinos

In the case of stable neutrinos most signals of a fourth generation lepton sector will be jets plus missing energy. Take an example, However with only electroweak cross section, these are quite hard to find at LHC as they may be lost in the QCD background. As an example 100 GeV neutrino has the same production cross section as a 1.5 TeV gluino(200 fb) without any hard missing energy cuts.

In addition, one if faced with a large W background. Channels which in the unstable neutrino case would have worked well are now buried, for example p p LN 1 WN 1 N 1

One strategy is to consider signal with multiple leptons, where the backgrounds are very small. One such signal is 4 leptons plus missing energy. Consider the following process,

This search will rely on the following cuts

Exclusion with 20 inverse fb at 14 TeV

More stuff to do: Consider searches were unstable charged lepton is the lightest particle possible other lepton signals of stable neutrinos case e.g. 2l+2j+missing energy Higgs decays

A possible Higgs decay

Extra Slides

Under the assumption that final state leptons are all the same flavor these are LEP’s exclusions. arXiv:hep-ex/ v1

Look for neutrino pair production

Half of the event will have same sign dileptons and Many event will have the final state For a dilepton search with proposed cuts

One may produce estimated efficiencies With possible exclusion up to 300 GeV or with 5 inverse fb of data, 3 sigma discovery potential for 225GeV neutrinos.