© 2009, Prentice-Hall, Inc. Temperature and Rate Generally, as temperature increases, so does the reaction rate. This is because k is temperature dependent.

Slides:



Advertisements
Similar presentations
Chapter 12 Chemical Kinetics
Advertisements

Chapter 17 - Chemical Kinetics
Chemistry, The Central Science, Chapter 14, 10th edition
Chapter 14 Chemical Kinetics
Chapter 13 Chemical Kinetics
Chemical Kinetics © 2009, Prentice-Hall, Inc. Temperature and Rate Generally, as temperature increases, so does the reaction rate. This is because k is.
Activation Energy and Catalyst. Temperature and Rate Generally, as temperature increases, so does the reaction rate. This is because k is temperature.
The Collision Theory and Activation Energy Explaining how and why factors affect reaction rates.
Chemical Kinetics Chapter 14. Summary of the Kinetics Reactions OrderRate Law Concentration-Time Equation Half-Life rate = k rate = k [A] rate =
Atkins’ Physical Chemistry Eighth Edition Chapter 22 – Lecture 2 The Rates of Chemical Reactions Copyright © 2006 by Peter Atkins and Julio de Paula Peter.
Factors Affecting Reactions
Chapter 14 Chemical Kinetics
Collision Theory In a chemical reaction, bonds are broken and new bonds are formed. Molecules react by colliding with each other.  molecules must collide.
Integration of the rate laws gives the integrated rate laws
Topic 6/16 Chemical Kinetics
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Rate of Reaction TEXT REFERENCE Masterton and Hurley Chapter 11.
Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics.
Chemical Kinetics Chapter 17 Chemical Kinetics Aka Reaction Rates.
© 2009, Prentice-Hall, Inc. Chapter 12 Chemical Kinetics.
Kinetics Reaction Rates. Collision theory Factors affecting reaction rate Potential energy diagrams temperature concentration Surface area catalystsActivated.
Chemical Kinetics Chapter 14 Chemical Kinetics. Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed.
Chemical Kinetics. Kinetics In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur,
Chapter 15 Chemical Kinetics: The Rate of Chemical Reactions.
Chapter 12 Chemical Kinetics How often does Kinetics appear on the exam? Multiple-choice 4-8% (2-5 Questions) Free-response: Almost every year Kinetics:
Chemical Kinetics Two Types of Rate Laws 1.Differential- Data table contains RATE AND CONCENTRATION DATA. Uses “table logic” or algebra to find the order.
Chemical Kinetics Chapter 14 Chemical Kinetics John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc.  Modified by.
1 Reaction Mechanism The series of steps by which a chemical reaction occurs. A chemical equation does not tell us how reactants become products - it is.
Chapter 14 Chemical Kinetics John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
Activation Energy E a : is the minimum energy that reactants must have to form products. the height of the potential barrier (sometimes called the energy.
Chemical Kinetics Chemical Kinetics John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc.  Modified by S.A. Green,
Chapter 14 Chemical Kinetics Dr. Subhash Goel South GA State College Douglas, GA Lecture Presentation © 2012 Pearson Education, Inc.
KINETICS. Studies the rate at which a chemical process occurs. a A + b B c C + d D v = - dc/dt = k [A]x [B]y Besides information about the speed at which.
Chemical Kinetics Chapter 14 Chemical Kinetics John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The.
Chemical Kinetics Chemical Kinetics or Rates of reaction.
Solutions © 2009, Prentice-Hall, Inc. Chapter 6 Chemical Kinetics Dr Nehdi Imededdine Arbi Associate Professor King Saud University Chemistry, The Central.
Chapter 14: Kinetics Wasilla High School
UNENE Chemistry Primer Lecture 12: Chemical Kinetics Derek Lister and William Cook University of New Brunswick Course Textbook: Chemistry, The Central.
Kinetics. Reaction Rate  Reaction rate is the rate at which reactants disappear and products appear in a chemical reaction.  This can be expressed as.
Chemical Kinetics © 2009, Prentice-Hall, Inc. Chapter 14 (Brown/Lemay) Chapter 12(Zumdahl) Chemical Kinetics John D. Bookstaver St. Charles Community College.
Notes 14-4 Obj. 14.5, The half-life of a first-order reaction is equal to _________, where k is the rate constant. a / k b k c. k /2.
Chapter 13 Chemical Kinetics. Kinetics In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which.
Chemical Kinetics © 2009, Prentice-Hall, Inc. Chapter 14 Chemical Kinetics John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry,
The Collision Model The reaction rate depends on: collision frequency
The Rate of Chemical Reactions
T1/2: Half Life Chemical Kinetics-6.
Chapter 13: Chemical Kinetics
14.1 Factors that affect reaction rates
Collision Theory and Rates of Reactions
Kinetic-Molecular Theory
Two Types of Rate Laws Differential- Data table contains RATE AND CONCENTRATION DATA. Uses “table logic” or algebra to find the order of reaction and.
Chapter 14 Chemical Kinetics
Chapter 11 Chemical Kinetics
Unit 11- Chemical Kinetics
Temperature and Rate The rates of most chemical reactions increase with temperature. How is this temperature dependence reflected in the rate expression?
Chapter 14 Chemical Kinetics
Second-Order Processes
Lecture 1404 Temperature and Rate
Chapter 14 Chemical Kinetics
Unit 8- Chemical Kinetics
Activation Energy.
Chemical Kinetics lecture no.8
KINETICS CONTINUED.
Kinetics.
Temperature and Rate The Collision Model
Rate Affecting Factors
Collision Model Goal: develop a model that explains why rates of reactions increase as concentration and temperature increases. The collision model: in.
Second-Order Processes
Presentation transcript:

© 2009, Prentice-Hall, Inc. Temperature and Rate Generally, as temperature increases, so does the reaction rate. This is because k is temperature dependent.

© 2009, Prentice-Hall, Inc. The Collision Model In a chemical reaction, bonds are broken and new bonds are formed. Molecules can only react if they collide with each other.

© 2009, Prentice-Hall, Inc. The Collision Model Furthermore, molecules must collide with the correct orientation and with enough energy to cause bond breakage and formation.

© 2009, Prentice-Hall, Inc. Activation Energy In other words, there is a minimum amount of energy required for reaction: the activation energy, E a. Just as a ball cannot get over a hill if it does not roll up the hill with enough energy, a reaction cannot occur unless the molecules possess sufficient energy to get over the activation energy barrier.

© 2009, Prentice-Hall, Inc. Reaction Coordinate Diagrams It is helpful to visualize energy changes throughout a process on a reaction coordinate diagram like this one for the rearrangement of methyl isonitrile.

© 2009, Prentice-Hall, Inc. Reaction Coordinate Diagrams The diagram shows the energy of the reactants and products (and, therefore,  E). The high point on the diagram is the transition state. The species present at the transition state is called the activated complex. The energy gap between the reactants and the activated complex is the activation energy barrier.

© 2009, Prentice-Hall, Inc. Maxwell–Boltzmann Distributions Temperature is defined as a measure of the average kinetic energy of the molecules in a sample. At any temperature there is a wide distribution of kinetic energies.

© 2009, Prentice-Hall, Inc. Maxwell–Boltzmann Distributions As the temperature increases, the curve flattens and broadens. Thus at higher temperatures, a larger population of molecules has higher energy.

© 2009, Prentice-Hall, Inc. Maxwell–Boltzmann Distributions If the dotted line represents the activation energy, then as the temperature increases, so does the fraction of molecules that can overcome the activation energy barrier. As a result, the reaction rate increases.

© 2009, Prentice-Hall, Inc. Maxwell–Boltzmann Distributions This fraction of molecules can be found through the expression where R is the gas constant and T is the Kelvin temperature. f = e - E a RT

© 2009, Prentice-Hall, Inc. Arrhenius Equation Svante Arrhenius developed a mathematical relationship between k and E a : k = A e where A is the frequency factor, a number that represents the likelihood that collisions would occur with the proper orientation for reaction. - E a RT

Sample Exercise Relating Energy Profiles to Activation Energies and Speed of Reaction Imagine that these reactions are reversed. Rank these reverse reactions from slowest to fastest. Answer: (2) < (1) < (3) because E a values are 40, 25, and 15 kJ/mol, respectively Practice Exercise Solution The lower the activation energy, the faster the reaction. The value of ΔE does not affect the rate. Hence the order is (2) < (3) < (1). Consider a series of reactions having the following energy profiles: Rank the reactions from slowest to fastest assuming that they have nearly the same frequency factors.

© 2009, Prentice-Hall, Inc. Arrhenius Equation Taking the natural logarithm of both sides, the equation becomes ln k = - ( ) + ln A 1T1T y = m x + b Therefore, if k is determined experimentally at several temperatures, E a can be calculated from the slope of a plot of ln k vs.. EaREaR 1T1T