Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Assessment of Probe-to-Specimen Distance Effect in Kidney Stone Treatment With.
Advertisements

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: Trajectory Tracking Control of a Mobile Robot Through a Flatness-Based Exact Feedforward.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Review and Advances in Heat Pipe Science and Technology J. Heat Transfer. 2012;134(12):
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Thermal Analysis of Inclined Micro Heat Pipes J. Heat Transfer. 2005;128(2):
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Transfer and Pressure Drop Analysis of Chilled Water and Ice Slurry in a.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: A Methodology for On the Fly Acoustic Characterization of the Feeding Line Impedances.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Calibrated Coarse Grid-Finite Volume Method for the Fast Calculation of the Underhood.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. Thermal Performance of an Al 2 O 3 –Water Nanofluid Pulsating Heat Pipe J. Electron.
Date of download: 7/3/2016 Copyright © ASME. All rights reserved. From: Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel.
Date of download: 7/5/2016 Copyright © ASME. All rights reserved. From: New Liquid Transfer Active Balancing System Using Compressed Air for Grinding Machine.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Measurements of Three-Dimensional Flow in Microchannel With Complex Shape by Micro-Digital-
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 11/12/2016 Copyright © ASME. All rights reserved. From: Pumpless Fuel Supply Using Pressurized Fuel Regulated by Autonomous Flow-Rate.
Date of download: 9/22/2017 Copyright © ASME. All rights reserved.
From: Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/4/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
From: Thermal Convection in Porous Media at High Rayleigh Numbers
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
From: Pressure Surge During Cryogenic Feedline Chilldown Process
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
From: Boilers Optimal Control for Maximum Load Change Rate
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Heat Exchanger Efficiency
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
From: Symmetrical Ball Check-Valve Based Rotation-Sensitive Pump
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/7/2018 Copyright © ASME. All rights reserved.
Date of download: 3/4/2018 Copyright © ASME. All rights reserved.
Date of download: 3/4/2018 Copyright © ASME. All rights reserved.
Date of download: 3/10/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles J. Heat Transfer. 2013;135(9): doi: / Schematic illustration of a nozzle-diffuser piezoelectric valveless micropump. (a) Cross-sectional view of a nozzle-diffuser piezoelectric valveless micropump. (b) “Supply mode” during pumping. Liquid flows inward to the pump chamber through microchannels, when channel 1 works as a diffuser and channel 2 works as a nozzle. (c) “Pump mode” during pumping. Liquid flows outward to both the inlet and the outlet through microchannels, when channel 1 works as a nozzle and channel 2 works as a diffuser. Figure Legend:

Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles J. Heat Transfer. 2013;135(9): doi: / Structure of a nozzle-diffuser piezoelectric valveless micropump. (a) Micropump after assembling. (b) Explosive view of a nozzle- diffuser piezoelectric valveless micropump. The microchannels are micromachined on PMMA boards. The top layer, the bottom layer, a piezoelectric membrane, an inlet and an outlet pipe are assembled with glue. Figure Legend:

Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles J. Heat Transfer. 2013;135(9): doi: / Pressure-loss coefficient for diffuser and nozzle. The same microchannel will work as diffuser or nozzle in different modes. Figure Legend:

Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles J. Heat Transfer. 2013;135(9): doi: / Experiment setup for the gas bubble observation and pressure pulsation measurement. The 250 Hz 80 V square wave signal is used to drive the piezoelectric membrane. A pressure transducer and the high-speed video camera are adopted for the pressure measurement and image acquisition. The data acquisition board and PC are used for data collection. Figure Legend:

Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles J. Heat Transfer. 2013;135(9): doi: / Experimental results and numerical data of gas bubbles and pressure pulsations. (a) Picture of micropump when gas bubbles occupy about 1/30 of the whole chamber volume (about 1.5 μL). (b) Comparison of simulation result and experimental data when gas bubbles occupy about 1/30 of the chamber volume. (c) Picture of micropump when gas bubbles occupy about 1/8 of the whole chamber volume (about 5 μL). (d) Comparison of simulation result and experimental data when gas bubbles occupy about 1/8 of the chamber volume. (e) Picture of micropump when gas bubbles occupy about 3/8 of the whole chamber volume (about 15 μL). (f) Comparison of simulation result and experimental data when gas bubbles occupy about 3/8 of the chamber volume. Figure Legend:

Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Dynamic Characterization of a Valveless Micropump Considering Entrapped Gas Bubbles J. Heat Transfer. 2013;135(9): doi: / Comparison of simulation results with different gas bubble volume. (a) Transient flow rate of the nozzle-diffuser valveless micropump when gas bubbles occupy 0%, 3.33%, 12.5%, and 37.5% of the whole pump chamber volume. (b) Accumulated flow rate (pumped liquid through outlet) for 2 s of the nozzle-diffuser valveless micropump when gas bubbles occupy 0%, 3.33%, 12.5%, and 37.5% of the whole pump chamber volume. Figure Legend: