Kinematically complete measurement of Coulomb breakup of Borromean halo nuclei at the SAMURAI facility at RIBF Takashi Nakamura Tokyo Institute of Technology.

Slides:



Advertisements
Similar presentations
Fig. 1 Side View of DALI from Up-stream 1 H( 17 C, 16 C → 15 C + n + γ)X Raw Doppler Effect Corrected Abstract DALI is a γ-ray detector, which is an array.
Advertisements

E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
不安定核反応実験における 高速中性子の検出 Fast Neutron Detection in Unstable Nuclei Reaction Experiment Ryuki Tanaka Tokyo Institute of Technology.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Invariant mass spectroscopy of 23 O via the (p,p’) reaction in inverse kinematics Y.Satou Seoul National University The Fifth Asia-Pacific Conference on.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Status Report of Neutron Detector Simulation Development Brian Roeder Postdoc LPC Caen 20 Sept
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
不安定核物理と理研 RI * ビームファクトリー 本林 透(理研仁科加速器研究センター) * radioactive isotope - first realization of next-generation exotic beam facilities.
Radiation damage calculation in PHITS
Neutron detector developments at LPC Caen  -delayed neutron detectors  current limitations  future issues Search for new solid scintillators (Neutromania)
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Coulomb breakup of the two-neutron halo nucleus 11 Li Takashi Nakamura Tokyo Institute of Technology International Conference on Finite Fermionic Systems.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
The Coulomb dissociation of 14Be 宋玉收 哈尔滨工程大学 上海.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Fusion of light halo nuclei
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Two-proton simultaneous emission from 29 S C.J. Lin 1, G.L. Zhang 1, F. Yang 1, H.Q. Zhang 1, Z.H. Liu 1, C.L. Zhang 1, P. Zhou 1, X.K. Wu 1, X.X. Xu 1,
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
CNS, Univ. of Tokyo MATSUSHITA Masafumi ガンマ線核分光で探る不安定核の殻構造進化 Sep 第3回 RIBF 討論会.
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Overview of RIBF H. Sakurai RIKEN Nishina Center.
The RIKEN RI Beam Factory
Spectroscopy of weakly bound and unbound nuclei
Weakly bound and unbound nuclei
(g, n) (g, p) experiment at SAMURAI
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
for the LNL-Ganil collaboration
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Giant Monopole Resonance
Event Reconstruction and Data Analysis in R3BRoot Framework
Search for unbound excited states of proton rich nuclei
Peripheral collisions Hans-Jürgen Wollersheim
Neutron Detection with MoNA LISA
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
Breakup reactions of one-neutron halo nucleus 31Ne
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
1. Introduction Secondary Heavy charged particle (fragment) production
Study of the resonance states in 27P by using
Neutron Detector Simulations for Fast Neutrons with GEANT4
GEANT Simulations and Track Reconstruction
Nuclear structure of 8B studied by proton resonance scatterings on 7Be
Neutron Detector Simulations for Fast Neutrons with GEANT4
E19 result Ryuta Kiuchi (SNU)
Status and perspectives of the LNS-FRIBS facility
Probing correlations by use of two-nucleon removal
Presentation transcript:

Kinematically complete measurement of Coulomb breakup of Borromean halo nuclei at the SAMURAI facility at RIBF Takashi Nakamura Tokyo Institute of Technology INPC 2013, 2-8 June, Firenze, Italy

Ca H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K N=8 N=2 Neutron Drip Line – Boundary of Bound Nuclei 2n halo known 2n/4n halo(skin)? 1n-halo known 19 C 24 O Established only up to Z=8 (O) Halo Structures New/Lost Magic Numbers Exotic Unbound Resonances --- Physics at the bound limit N Z N=16 N=20 22 C 31 Ne 19 B Island of Inversion 37 Mg N. Kobayashi Session D2 14 Be 11 Li

22 C 0d 5/2 1S 1/2 0d 3/  Prominent 2n-Halo? Reaction cross section measurement ( ) 1/2 =5.4(9) fm c.f. ~3.5 fm 11 Li K.Tanaka et al., PRL 104, (2010).  N=16 Magicity? “Inclusive” Nuclear and Coulomb breakup at 240 MeV/nucleon  N=16 Magicity, 2n Halo N.Kobayashi et al.,PRC86, (2012). A.Ozawa et al., PRL 84, 5493 (2000). Z=8 22 C 20 C 19 C A  R (mb)  Heaviest s-wave dominant 2n Halo?

22 C High-Z Target (Pb) 20 C n  = N E1 (E x ) dB(E1) dE x d  CB dE x 9hc 16  3 Cross section = (Photon Number)x  Transition Probability) Invariant Mass Equivalent Photon Method 22 C* Coulomb Breakup  Photon absorption of a fast projectile  ~0.6 C.A. Bertulani, G. Baur, Phys. Rep. 163,299(1988). n

E1 Response of halo nuclei ExEx 10~20MeV 1~2MeV dB(E1) dE x 11 Be Direct Breakup Mechanism B(E1) spectrum  Halo Single particle State (S n, l,C 2 S) N.Fukuda et al., PRC70, (2004),TN et al.,PLB 331,296(1994), Palit et al., PRC68, (2003)  exp(iqr)| rY 1 m | s 1/2  | 2 dB(E1) dE x  exp(iqr)| rY 1 m |  gs  | 2 Z A  C2SC2S Z A Soft E1 excitation 11 Li TN et al. PRL96,252502(2006). GDR  Two neutron Correlation (  12 ) T.Otsuka,M.Ishihara, M.Fukunishi,TN, M.Yokoyama, et al.,PRC49, R2289 (1994)

22 C+Pb  |(2s 1/2 ) 2 > +  |(1d 3/2 ) 2 > +  |(2p 3/2 ) 2 > +  |(1f 7/2 ) 2 > …. Correlated: 62.5%24.2% 4.7% 3.8% S 2n =500keV 22 C: Theoretical Calculation by K.Hagino |(2s 1/2 ) 2 > 100% Non-Correlated: (s only) 1.05b 1.66b  Kinematically Complete Measurement of Coulomb Breakup n 20 C r  12 n N=16

RIKEN RI Beam Factory (RIBF) Completed in 2007 New-Generation RI-beam facility SRC: World Largest Cyclotron (K=2500 MeV) Heavy Ion Beams up to 238 U at 345MeV/u (Light Ions up to 440MeV/u) 48 Ca beam at 345 MeV/nucleon typical ~200pnA (250pnA max.) 238 U beam at 345 MeV/nucleon typical ~12pnA (15pnA max.) SRC ZDS SAMURAI BigRIPS SHARAQ Rare RI RING SCRIT SLOWRI 2014

22 C 240MeV/nucleon 20 C n n BDC1 BDC2 Pb Target Experimental Setup at SAMURAI: Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam Super Conducting Magnet 3T

SAMURAI Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam March 2012

22 C 19 B 17 B 20 C 19 C 23 N 22 N High intense RIBF Beam 22 C: ~15/s (c.f. 10/hour K.Tanaka,PRL2010, Gain of ~5000! A/Z EE Particle Identification of RI Beams 22 C+Pb/C  20 C+n+n 19 B+Pb/C  17 B+n+n A/Z 19 B 17 B 20 C 19 B ~100 /s 17 B ~1000 /s 22 C ~15 /s 23 N ~100 /s 48 Ca 150~200pnA (Max 250pnA) A/Z

preliminary Counts T. Sugimoto et al., Phys. Lett. B 654, 160 (2007). 14 Be (2 + ) E=68 MeV/nucleon 87(5) keV (1σ) 100 keV (1σ) 14 Be (2 + ) E=213 MeV/nucleon Obtained only in 51min! 14 Be: ~2x10 4 pps Good Resolution as designed ! E rel (MeV) 14 Be+C  12 Be+n+n 14 Be

C( 14 Be, 12 Be+2n) Pb( 14 Be, 12 Be+2n) electromagnetic dissociation (sigma_emd = sigma_Pb - 1.8*sigma_C) Preliminary M. Labiche et al., Phys. Rev. Lett. 86, 600 (2001). Pb( 14 Be, 12 Be+2n) 213 MeV/nucleon E rel (MeV) 215 MeV/nucleon 35 MeV/nucleon 14 Be+Pb(C)  12 Be+2n 14 Be

Summary Coulomb Breakup – Useful Tool to Probe Halo Structure – single particle state for 1n halo – 2n correlation for 2n halo RIBF: Large Acceptance Superconducting Magnet + NEBULA/HI detectors – Powerful facility for kinematically complete measurement of breakup reactions at MeV/nucleon Coulomb breakup of 22 C, 19 B, 14 Be: Successfully Done Preliminary Results of Coulomb breakup of 14 Be – Soft E1 peak has been obtained

Collaborators Tokyo Institute of Technology: Y.Kondo, T.Nakamura, N.Kobayashi, R.Tanaka, R.Minakata, S.Ogoshi, S.Nishi, D.Kanno, T.Nakashima LPC CAEN: N.A.Orr, J.Gibelin, F.Delaunay, F.M.Marques, N.L.Achouri, S.Leblond Tohoku University : T.Koabayshi, K.Takahashi, K.Muto RIKEN: K.Yoneda, T.Motobayashi,H.Otsu, T.Isobe, H.Baba,H.Sato, Y.Shimizu, J.Lee, P.Doornenbal, S.Takeuchi, N.Inabe, N.Fukuda, D.Kameda, H.Suzuki, H.Takeda, T.Kubo Seoul National University: Y.Satou, S.Kim, J.W.Hwang Kyoto University : T.Murakami, N.Nakatsuka GSI : Y.Togano Univ. of York: A.G.Tuff GANIL: A.Navin Technische Universit¨at Darmstadt: T.Aumann Rikkyo Univeristy: D.Murai Universit´e Paris-Sud, IN2P3-CNRS: M.Vandebrouck SAMURAI Dayone Experiment (May 2012) First experimental campaign for the 3 physics programs 1.Coulomb breakup of 22 C and 19 B (T. Nakamura) 2.Study of unbound states of 22 C, 21 C, 19 B, 18 B (N. A. Orr) 3.Study of unbound nuclei 25 O and 26 O (Y. Kondo)

Commissioning in March 2012 Kickoff all the detectors, DAQs for the ( ,n) setup Beam transport to SAMURAI Heavy ion detectors optimization NEBULA calibration –Time-zero with high-energy gamma –Efficiency measurement (inc. 2n cross talk) with 7 Li(p,n) reaction B  scan for rigidity calibration Heavy ion – neutron coincidence measurement – 17 C  16 C+n 17 C  15 B+n – 15 C  14 C+n – 14 Be  12 Be+2n Everything worked perfectly !! Primary Beam: 18 O: 290 MeV/nucleon: 500 pnA

SAMURAI Commissioning Experiment 1 n p nat Li ・ Quasi-monoenergetic ・ Single Neutron ・ Cross Section is well known → TOF Resolution, Efficiency p 7 Li(p,n) 7 Be(g.s MeV) 200 MeV & 250 MeV NEBULA SAMURAI Magnet B max =3T, superconducting Obtained as 2ndary beam: ~2x10 5 pps

Time of Flight Resolution Threshold level = 6 MeVee θ lab < ±40 mrad Counts TOF(measured) - TOF(calculate) (ns) σ TOF =335(5) ps 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total Intrinsic Resolution: σ TOF =263(6) ps All effects not related to NEBULA taken into account cf.) ~300 ps (designed value) E n :194MeV

Efficiency Counts E n (MeV) 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (1.4%) 7 Be other excited states + scattered neutrons total 32.3(4) % ~6% correction for neutron flux loss, etc. Intrinsic Efficiency: 34.7±0.4(stat.)±1.0(syst.)% E th =6 MeVee θ lab < ±40 mrad cf.) 37% Geant4 with INCLXX 40% DEMONS

Cross-talk spectrum in 7 Li(p,n) data  12 /   Counts Pulse Height (MeVee) for the 2 nd hit 11 n    12 Scattering at 1 st Wall Cosmic Rays from the back4 Cosmic Rays from the front n    12 Evapolation/ Preequilibrium at 2 nd Wall Cosmic Ray Events can be excluded Almost Cross-talk free  12 /    12 /     Cross talk: mostly excluded Iwamoto et al.,J. KPS, 59, 1753 (2011).

SAMURAI Commissioning Experiment 2 ・ 2-neutron event → cross-talk rejection C( 14 Be, 12 Be+n+n) 220 MeV/A NEBULA 14 Be n n 12 Be C Pb SAMURAI Magnet B max =3T, superconducting

preliminary Counts T. Sugimoto et al., Phys. Lett. B 654, 160 (2007). 14 Be (2 + ) E=68 MeV/nucleon 87(5) keV (1σ) 100 keV (1σ) 14 Be (2 + ) E=213 MeV/nucleon Obtained only in 51min! 14 Be: ~2x10 4 pps Good Resolution as designed ! E rel (MeV)

C( 14 Be, 12 Be+2n) Pb( 14 Be, 12 Be+2n) electromagnetic dissociation (sigma_emd = sigma_Pb - 1.8*sigma_C) Preliminary M. Labiche et al., Phys. Rev. Lett. 86, 600 (2001). Pb( 14 Be, 12 Be+2n) 213 MeV/nucleon E rel (MeV) 215 MeV/nucleon 35 MeV/nucleon

Development of Neutron Simulator

✔ Simulator for neutron detector array is Not established for E n ~ 250 MeV neutron → ・ developed new simulator with Geant4 ・ compare with SAMURAI commissioning data 7 Li(p,n) 7 Be(g.s MeV) ✔ Simulation is Needed for Analysis and Development of Neutron Detector ・ response function ・ acceptance ・ efficiency etc. Development of Simulator (E n =200 MeV)

Evaluation of neutron Simulators with GEANT4 Compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) c.f. Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012).

・ MENATE_R (treat each reaction channel) MENATE_R(GEANT4): neutron detector simulator (Originally MENATE(FORTRAN))

BERT, INCLXX (Geant4 built in class) ・ BERT : Bertini Intranuclear Cascade Model (Bertini: H. W. Bertini) - M. P. Guthrie, R. G. Alsmiller and H. W. Bertini, Nucl. Instr. Meth, 66, 1968, widely used ・ INCLXX : INCL++ → c++ version of INCL INCL: Liege Intranuclear Cascade Model (Liege: the Belgian city) - developed and validated for recent data - typical users are from the nuclear physics community studying spallation processes Nuclear Instruments and Methods in Physics Research A 491 (2002) 492–506 Model limit ~200 MeV < E n < ~10 GeV (Journal of Physics: Conference Series 119 (2008) )

Evaluation of Simulator INCLXX MENATER Experiment BERT Light Output (MeVee) Counts compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012). Area normalized to experiment

INCLXX gives best agreement Evaluation of Simulator BERT INCLXX MENATER Light Output Threshold (MeVee) Efficiency(sim.) / Efficiency(exp.) w/o 12 C(n,p) 12 B MENATER compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012). Light Output Threshold (MeVee) Efficiency (%) MENATER BERT INCLXX Experiment

Results for the Heavy Ion Fragments

Momentum Resolution of the Experiment Use of Be, C beams with well-defined magnetic rigidity B  : reconstructed from tracking with 4 drift chambers BDC1,BDC2: incoming vector to define the target vertex FDC1: outgoing vector (after the target, before the bending) FDC2: outgoing vector (after the target, after the bending) Scattering Angular Resolution  0.9mrad (rms) B  Resolution  1/1500  5  mass resolution for A=100 B  : by particle tracing using Runge-Kutta Method for the best Position matching, Magnetic Field: calculated by TOSCA

Counts Mass number 23 O 22 O 24 O 26 F+C  A O ~10  separation! Clear Particle identification!  High resolving power of the SAMURAI spectrometer Mass identification preliminary Courtesy of Yosuke Kondo

Summary SAMURAI  Large Acceptance, Multi-Purpose Spectrometer with Neutron/Heavy ion/proton detectors  A Variety of Opportunities for RI-Beam Science SAMURAI Commissioning March 2012 Successfully Done ! --- Momentum Resolution ~1/1500  5  separation for A= NEBULA: Large Acceptance Neutron detector array Good neutron detection efficiency 35% for 1n Good timing resolution 263(6)ps Good position resolution ~3cm Good selection of 2n events --- Simulator based on GEANT4+INCLXX developed: Work Well Be  2n+ 12 Be : Proved good performance of a whole system Day-One Campaign Experiments: May 2012 Coulomb/nuclear breakup of 22 C/ 19 B, Unbound heavy oxygen isotopes  Successfully Done A variety of Experimental Programs in the near future with TPC, proton detectors, MINOS,  -ray calorimeter (Funded/being Constructed)

SAMURAI Construction Team T.Kobayashi a, N.Chiga a, T.Isobe b, Y.Kondo c, T.Kubo b, K.Kusaka b,T.Motobayashi b, T.Nakamura c, J.Ohnishi b, H.Okuno b, H. Otsu b, T.Sako c, H.Sato b, Y.Shimizu b, K.Sekiguchi a, K.Takahashi a,R. Tanaka c, Y.Yoneda b a)Tohoku Univeristy b)RIKEN Nishina Center c)Tokyo Institute of Technology

Collaborators Tokyo Institute of Technology: Y.Kondo, T.Nakamura, N.Kobayashi, R.Tanaka, R.Minakata, S.Ogoshi, S.Nishi, D.Kanno, T.Nakashima LPC CAEN: N.A.Orr, J.Gibelin, F.Delaunay, F.M.Marques, N.L.Achouri, S.Leblond Tohoku University : T.Koabayshi, K.Takahashi, K.Muto RIKEN: K.Yoneda, T.Motobayashi,H.Otsu, T.Isobe, H.Baba,H.Sato, Y.Shimizu, J.Lee, P.Doornenbal, S.Takeuchi, N.Inabe, N.Fukuda, D.Kameda, H.Suzuki, H.Takeda, T.Kubo Seoul National University: Y.Satou, S.Kim, J.W.Hwang Kyoto University : T.Murakami, N.Nakatsuka GSI : Y.Togano Univ. of York: A.G.Tuff GANIL: A.Navin Technische Universit¨at Darmstadt: T.Aumann Rikkyo Univeristy: D.Murai Universit´e Paris-Sud, IN2P3-CNRS: M.Vandebrouck SAMURAI Dayone Experiment (May 2012) First experimental campaign for the 3 physics programs 1.Coulomb breakup of 22 C and 19 B (T. Nakamura) 2.Study of unbound states of 22 C, 21 C, 19 B, 18 B (N. A. Orr) 3.Study of unbound nuclei 25 O and 26 O (Y. Kondo)

Magnetic Field Calculated from TOSCA Scaling factors: +0.10% for 3T +0.35% for 2.5T +0.45% for 2T Resolution: 0.06% (1/1500) at 3Tesla Deviation 0.1%(1/1000) (which can be corrected) T.Kobayashi et al.

Efficiency correction 6.9% (E n = 200 MeV) 6.2% (E n = 250 MeV) ~ 6-7% correction ・ neutron flux loss by materials - Li target - neutron window - air between neutron window and NEBULA ・ scattered neutrons ~3%

26.0(7) 200 MeV → 2.7 %

Efficiency E n = 200 MeV Threshold level = 6 MeVee θ lab < ±40 mrad Counts E n (MeV) 7 Li(p,n) 7 Be(g.s.+0.43MeV) 6 Li(p,n) 6 Be (4.4%) 7 Be other excited states + scattered neutrons total 32.3(4) % NEBULA's intrinsic efficiency: count right part of energy dist. → counts full fit procedure → counts 1.5% difference (FWHM)

1-Neutron Event Pb( 15 C, 14 C+n) β 01 /β 12 Counts fake 2-neutron Crosstalk 2-Neutron Event C( 14 Be, 12 Be+n+n) Inelastic Scattering of 14 Be β 01 /β 12 Counts 2-neutron Crosstalk (+ 2-neutron) 13% 43% (0 MeV < E rel <1 MeV) BG ~1/20 contribution Coulomb Breakup of 15 C:

TOF resolution correction

DEMONS

A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976). Cross section (mb) n+C Inelastic== Not elastic

A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976). DEMONS

A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976). MENATE_R

A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976). MENATE_R w/o 12 C(n,p) 12 B

A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976). G4NEUTRONXS ・ one of built in cross section ・ used in new simulator