Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms.

Slides:



Advertisements
Similar presentations
The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular.
Advertisements

Chapter 11 Cell Communication.
CONCEPT 5.6: The plasma membrane plays a key role in most cell signaling In multicellular organisms, cell-to-cell communication allows the cells of the.
Cell Communication Chapter 11 Local regulators – in the vicinity a.Paracrine signaling – nearby Cells are acted on by signaling Cell (ie. Growth factor)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 11 Cell Communication Cell Communication.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 11 Cell Communication.
Signal Transduction Pathways
Cell To Cell Communication
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
A signal ___________________ pathway is a series of steps by which a signal on a cell’s surface is _______________into a specific cellular ______________.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
AP Biology – Ms. Whipple BCHS.  The yeast, Saccharomyces cerevisiae, has two mating types, a and   Cells of different mating types locate each other.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 11 Cell Communication.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Please turn in your completed case study (all parts!)
Chapter 11.  Cell-to-cell communication is essential for both multicellular and unicellular organisms  Biologists have discovered some universal mechanisms.
Overview: The Cellular Internet Cell-to-cell communication is essential for organisms Biologists have discovered some universal strategies and mechanisms.
Cell Communication.  Cell-to-cell communication is important for multicellular organisms.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Objective 12: TSWBAT construct explanations of cell communication through cell-to-cell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 11: Cell Communication “No man’s an island and neither is a cell.”
Fig Chapter 11 Cell Communication. Please note that due to differing operating systems, some animations will not appear until the presentation is.
Cell Signaling basics.
Cell Communication.
Cell Communication.
Cell Communication 3d1: Cell communication processes share common features that reflect a shared evolutionary history 3d2: Cells communicate with each.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 11: Cell Communication - The Cellular Internet Cell-to-cell communication.
Chapter 11 Cell Communication. LE 11-2 Exchange of mating factors Mating Receptor a   factor a  a factor Yeast cell, mating type a Yeast cell, mating.
Chapter 11 Cell Communication. Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cell Communication.
The Three Stages of Cell Signaling: A Preview
Cell Communication.
Lecture: Cell Signaling
Cell Communication Chapter 7. Pathway similarities suggest that ancestral signaling molecules evolved in prokaryotes and were modified later in eukaryotes.
Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms.
Cell Communication. Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular.
Aim: How can we describe the structure and function of signal transduction pathways? Do Now: Is cell-to-cell communication important for unicellular organisms?
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Cell Communication-11 Cellular Messaging Cell-to-cell communication is essential for both multicellular and unicellular organisms Biologists have discovered.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Chapter 11 Cell Communication.
Cell Communication Chapter 11
Chapter 11 Cell Communication.
Overview: Cellular Messaging
The plasma membrane plays a key role in most cell signaling
Overview of Cellular Signaling Mechanisms
Cell Communication.
Chapter 11 Cell Communication.
Cell signaling and communication
Evolution of Cell Signaling
Overview: Cellular Messaging
Chapter 11 Cell Communication
Cell Communication.
Cell-to-cell communication is essential for multicellular organisms
Chapter 11 Cell Communication.
Intracellular Receptors
Chapter 11 Cell Communication.
Cell-to-cell communication is essential for multicellular organisms
Overview: The Cellular Internet
Chapter 11 Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular regulation.
Chapter 11 Cell Communication.
Fig Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)?
Cell Communication.
Presentation transcript:

Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular regulation The combined effects of multiple signals determine cell response For example, the dilation of blood vessels is controlled by multiple molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Evolution of Cell Signaling A signal transduction pathway is a series of steps by which a signal on a cell’s surface is converted into a specific cellular response Signal transduction pathways convert signals on a cell’s surface into cellular responses Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Local and Long-Distance Signaling Cells in a multicellular organism communicate by chemical messengers Animal and plant cells have cell junctions that directly connect the cytoplasm of adjacent cells In local signaling, animal cells may communicate by direct contact, or cell-cell recognition Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Plasma membranes Gap junctions between animal cells (a) Cell junctions Plasmodesmata between plant cells (b) Cell-cell recognition

Fig Receptor  factor a factor a   a Exchange of mating factors Yeast cell, mating type a Yeast cell, mating type  Mating New a/  cell a/  1 2 3

Fig Individual rod- shaped cells Spore-forming structure (fruiting body) Aggregation in process Fruiting bodies 0.5 mm 1 3 2

In many other cases, animal cells communicate using local regulators, messenger molecules that travel only short distances In long-distance signaling, plants and animals use chemicals called hormones Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Local signaling Target cell Secreting cell Secretory vesicle Local regulator diffuses through extracellular fluid (a) Paracrine signaling(b) Synaptic signaling Target cell is stimulated Neurotransmitter diffuses across synapse Electrical signal along nerve cell triggers release of neurotransmitter Long-distance signaling Endocrine cell Blood vessel Hormone travels in bloodstream to target cells Target cell (c) Hormonal signaling

The Three Stages of Cell Signaling: A Preview Earl W. Sutherland discovered how the hormone epinephrine acts on cells Sutherland suggested that cells receiving signals went through three processes: – Reception – Transduction – Response Animation: Overview of Cell Signaling Animation: Overview of Cell Signaling Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Reception 1 EXTRACELLULAR FLUID Signaling molecule Plasma membrane CYTOPLASM 1 Receptor

Fig EXTRACELLULAR FLUID Signaling molecule Plasma membrane CYTOPLASM Transduction 2 Relay molecules in a signal transduction pathway Reception 1 Receptor

Fig EXTRACELLULAR FLUID Plasma membrane CYTOPLASM Receptor Signaling molecule Relay molecules in a signal transduction pathway Activation of cellular response TransductionResponse 2 3 Reception 1

Concept 11.2: Reception: A signal molecule binds to a receptor protein, causing it to change shape The binding between a signal molecule (ligand) and receptor is highly specific A shape change in a receptor is often the initial transduction of the signal Most signal receptors are plasma membrane proteins Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Receptors in the Plasma Membrane Most water-soluble signal molecules bind to specific sites on receptor proteins in the plasma membrane There are three main types of membrane receptors: – G protein-coupled receptors – Receptor tyrosine kinases – Ion channel receptors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A G protein-coupled receptor is a plasma membrane receptor that works with the help of a G protein The G protein acts as an on/off switch: If GDP is bound to the G protein, the G protein is inactive Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 11-7b G protein-coupled receptor Plasma membrane Enzyme G protein (inactive) GDP CYTOPLASM Activated enzyme GTP Cellular response GDP P i Activated receptor GDP GTP Signaling molecule Inactive enzyme

15.3 How Is a Response to a Signal Transduced through the Cell? Studies with human bladder cancer cells: They have an abnormal form of a G protein called Ras. The protein was permanently bound to GTP, causing continuous cell division. Ras was thought to be an intermediary between binding of growth factor to receptor, and the cell’s response.

Receptor tyrosine kinases are membrane receptors that attach phosphates to tyrosines A receptor tyrosine kinase can trigger multiple signal transduction pathways at once Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 11-7c Signaling molecule (ligand) Ligand-binding site  Helix Tyrosines Tyr Receptor tyrosine kinase proteins CYTOPLASM Signaling molecule Tyr Dimer Activated relay proteins Tyr P P P P P P Cellular response 1 Cellular response 2 Inactive relay proteins Activated tyrosine kinase regions Fully activated receptor tyrosine kinase 6 6 ADP ATP Tyr P P P P P P

A ligand-gated ion channel receptor acts as a gate when the receptor changes shape When a signal molecule binds as a ligand to the receptor, the gate allows specific ions, such as Na + or Ca 2+, through a channel in the receptor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 11-7d Signaling molecule (ligand) Gate closed Ions Ligand-gated ion channel receptor Plasma membrane Gate open Cellular response Gate closed 3 2 1

Intracellular Receptors Some receptor proteins are intracellular, found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the membrane and activate receptors Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone-receptor complex can act as a transcription factor, turning on specific genes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Receptor protein Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Hormone- receptor complex DNA NUCLEUS CYTOPLASM Hormone (testosterone) Receptor protein Plasma membrane EXTRACELLULAR FLUID DNA NUCLEUS CYTOPLASM

Concept 11.3: Transduction: Cascades of molecular interactions relay signals from receptors to target molecules in the cell Signal transduction usually involves multiple steps Multistep pathways can amplify a signal: A few molecules can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Signal Transduction Pathways The molecules that relay a signal from receptor to response are mostly proteins Like falling dominoes, the receptor activates another protein, which activates another, and so on, until the protein producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Protein Phosphorylation and Dephosphorylation In many pathways, the signal is transmitted by a cascade of protein phosphorylations Protein kinases transfer phosphates from ATP to protein, a process called phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Inactive protein kinase 2 ATP ADP Active protein kinase 2 P P PP Inactive protein kinase 3 ATP ADP Active protein kinase 3 P P PP i ATP ADP P Active protein PP P i Inactive protein Cellular response Phosphorylation cascade i

Termination of the Signal Inactivation mechanisms are an essential aspect of cell signaling When signal molecules leave the receptor, the receptor reverts to its inactive state Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Protein phosphatases remove the phosphates from proteins, a process called dephosphorylation This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Small Molecules and Ions as Second Messengers The extracellular signal molecule (the first messenger) that binds to the receptor can also generate a second messenger along the pathway Second messengers are small, nonprotein, water-soluble molecules or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by G protein-coupled receptors and receptor tyrosine kinases Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The second messenger carries the signal from the membrane receptor to the cytoplasm. Second messengers affect many cell processes, amplifying the signal. They are short life molecules Some of the most well known second messengers are: cAMP IP3 and DAG Ca ++ Nitric Oxide (NO)

Adenylyl cyclase Fig Pyrophosphate P P i ATP cAMP Phosphodiesterase AMP

First messenger Fig G protein Adenylyl cyclase GTP ATP cAMP Second messenger Protein kinase A G protein-coupled receptor Cellular responses

Calcium Ions and Inositol Triphosphate (IP 3 ) Calcium ions (Ca 2+ ) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

EXTRACELLULAR FLUID Fig ATP Nucleus Mitochondrion Ca 2+ pump Plasma membrane CYTOSOL Ca 2+ pump Endoplasmic reticulum (ER) Ca 2+ pump ATP Key High [Ca 2+ ] Low [Ca 2+ ]

A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol Pathways leading to the release of calcium involve inositol triphosphate (IP 3 ) and diacylglycerol (DAG) as additional second messengers Animation: Signal Transduction Pathways Animation: Signal Transduction Pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig G protein EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein-coupled receptor Phospholipase C PIP 2 DAG IP 3 (second messenger) IP 3 -gated calcium channel Endoplasmic reticulum (ER) Ca 2+ CYTOSOL Various proteins activated Cellular responses Ca 2+ (second messenger ) GTP

Figure The IP 3 /DAG Second-Messenger System

Concept 11.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities The cell’s response to an extracellular signal is sometimes called the “output response” Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Nuclear and Cytoplasmic Responses Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or may involve action in the nucleus Many signaling pathways regulate the synthesis of enzymes or other proteins, usually by turning genes on or off in the nucleus The final activated molecule may function as a transcription factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Growth factor Receptor Phosphorylatio n cascade Reception Transduction Active transcription factor Response P Inactive transcription factor CYTOPLASM DNA NUCLEUS mRNA Gene

Other pathways regulate the activity of enzymes

Figure A Signal Transduction Pathway Leads to the Opening of Ion Channels (Part 1)

Figure A Signal Transduction Pathway Leads to the Opening of Ion Channels (Part 2)

Signaling pathways can also affect the physical characteristics of a cell, for example, cell shape Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig RESULTS CONCLUSION Wild-type (shmoos)∆Fus3∆formin Shmoo projection forming Formin P Actin subunit P P Formin Fus3 Phosphory- lation cascade GTP G protein-coupled receptor Mating factor GDP Fus3 P Microfilament

Signal Transduction Advantages of signal transduction pathway: – Amplification: One molecule of receptor, activated 100 molecules of second meesenger which activates 1000 molecules of effecor proteins down the cascade and so on. – Specificity: Only a specific signal at the cell membrane is transferred inside the cell. – Provide more opportunities of regulation: Having many steps affecting different target proteins also allows for a variety of responses by different cells to the same signal.

Fig Reception Transduction Response Binding of epinephrine to G protein-coupled receptor (1 molecule) Inactive G protein Active G protein (10 2 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (10 2 ) ATP Cyclic AMP (10 4 ) Inactive protein kinase A Active protein kinase A (10 4 ) Inactive phosphorylase kinase Active phosphorylase kinase (10 5 ) Inactive glycogen phosphorylase Active glycogen phosphorylase (10 6 ) Glycogen Glucose-1-phosphate (10 8 molecules)

The Specificity of Cell Signaling and Coordination of the Response Different kinds of cells have different collections of proteins These different proteins allow cells to detect and respond to different signals Even the same signal can have different effects in cells with different proteins and pathways Pathway branching and “cross-talk” further help the cell coordinate incoming signals Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Signaling molecule Receptor Relay molecules Response 1 Cell A. Pathway leads to a single response. Response 2 Response 3 Cell B. Pathway branches, leading to two responses. Response 4 Response 5 Activation or inhibition Cell C. Cross-talk occurs between two pathways. Cell D. Different receptor leads to a different response.

Fig. 11-UN1 Reception Transduction Response Receptor Relay molecules Signaling molecule Activation of cellular response 1 2 3