Controlled by Actin Binding Proteins

Slides:



Advertisements
Similar presentations
ODEs part 3. Network model example Model considers positive feedback loops involving signalling pathways and/or gene regulation. Multiple interlinked.
Advertisements

Regulation of actin filament dynamics in vivo Fig , Alberts G-actin F-actin Drugs that destabilize actin filaments e.g. cytochalasins –Cytochalasin.
Cytoskeleton Mark Wiser. Mitochondria Plasma Membrane Nucleus Lysosome ER Golgi.
The Cytoskeleton The cytoskeleton is an aggregate structure formed of 3 kinds of cytoplasmic filamentous proteins: microfilaments (actins), intermediate.
Chapter 16 The Cytoskeleton.
Lecture 13 - Intermediate filaments. Intermediate filaments Present in nearly all animals, but absent from plants and fungi Rope-like network.
How does actin polymerization drive protrusion? Polymerization at tip? Expansion of actin meshwork? Increase in hydrostatic pressure? Hypothesis #1 Hypothesis.
Microfilaments and Intermediate Filaments Presented by: Leslie Hargis.
1 Cytoskeleton A cytoplasmic system of fibers -> critical to cell motility (movement) Macrophage cytoskeleton Cytoskeleton of a lung cell in mitosis.
Moyes and Schulte Chapter 6 Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings Cellular Movement and Muscles.
Cytoskeleton and Cell Motility
The role of tropmyosin in muscle contraction. 9.7 Nonmuscle motility (1) Actin-binding proteins affect the localized assembly or disassembly of the actin.
CYTOSKELETON (I) Actin filaments
Regulation of Cytoskeletal Filaments
The Cytoskeleton. Intermediate Filaments 8-10 nm in diameter Four types: basis of aa sequence actin & tubulin -> globular protein, cell type.
BE/APh161 – Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology.
Cell and Molecular Biology Behrouz Mahmoudi Cytoskeleton-1 1.
Online Counseling Resource YCMOU ELearning Drive… School of Architecture, Science and Technology Yashwantrao Chavan Maharashtra Open University, Nashik.
Announcements Review sessions here today, Monday, 6-8PM Exam Wednesday covers molecular biology through endocytosis I will upload exam 3 from Gard last.
Cell Motility and Shape require microfilaments (F-actin), microtubules and intermediate filaments. Not surprisingly, the actin skeleton is dynamic, not.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Slides prepared by Stephen Gehnrich, Salisbury University.
Cell-cell adhesion occurs through morphological structures and CAMs.
Lecture 12 - The actin cytoskeleton
Lecture 17 - Cell motility. The Range of Cell Movement Velocities of moving cells span more than 4 orders of magnitude Each cell has evolved.
(and intermediate filaments)
Review Lecture II. 3 pathways to degradation in the lysosome.
Cell Motility Lecture 17. Cell Motility Includes: –Changes in Cell Location –Limited Movements of Parts of Cells Occurs at the Subcellular, Cellular,
Cytoskeleton II Chapter 16.
Key Events in the Cell Cycle
Lecture 12 - The actin cytoskeleton. Actin filaments allow cells to adopt different shapes and perform different functions VilliContractile bundles.
Microfilaments In this chapter of our web text, we will examine the architecture of the Actin Microfilament Cytoskeleton. Microfilaments are polymers of.
APBs involved in regulating actin dynamics (Cont.) 2. How high rates of actin polymerization are maintained at the protruding edge? Thymosin  -4 Profilin.
Copyright (c) by W. H. Freeman and Company Chapter 18 Cell Motility and Shape I: Microfilaments.
The tail of Listeria monocytogenes : Lessons learned from a bacterial pathogen (cont.) 1. How do Listeria make tails Nucleation, growth 2. Role of ABPs.
Chapter 15 Cytoskeleton: Regulation by Accessory Proteins
Cytoskeleton Inside the plasma membrane is the cytoplasm. For a long time, it is believed that cytoplasm contains many organelles floating in a soluble.
Introduction: Why the Cytoskeleton Is Important What is the function of the system on the right?
Actin By Enrique M. De La Cruz & E. Michael Ostap
Microtubules (17) Dynamic instability –Growing and shrinking microtubules can coexist in the same region of a cell. –A given microtubule can switch back.
Alberts Fig Photobleaching fluorescent actin in a fibroblast The fluorescent mark moves backward with respect to the front cell edge (and with respect.
Cell Signaling and Migration Erich Lidstone April 29, 2009.
Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.
The cytoskeleton, mitochondrial bioenergetics and apoptosis Professor Daniel C. Hoessli March 2013.
Lecture 3 Actin and myosin in non-muscle cells; Cell motility Outline:
Copyright © 2005 Pearson Prentice Hall, Inc.
CHAPTER 9 The Cytoskeleton and Cell Motility. Introduction The cytoskeleton is a network of filamentous structures: microtubulues, microfilaments, and.
CYTOSOL AND CYTOSKELETON CYTOSOL: fluid part of the cell cytoplasm Components:water ionsenzymes inclusion bodies.
INTRODUCTION Unit 8 - Cytoskeleton.
Filaments Of The Cytoskeleton
LECTURE 3 - NONMUSCLE CELLS & CELL LOCOMOTION Non-Contractile Bundles Lamellipodia Filopodia Surface Projections Non-Muscle Cells Circumferential belt.
Aktin cytoskeleton Seminar PCDU WS15/16 Vera Krieger
Key Points in Constitution of Cytoskeleton Network 1.Polymerization of monomer 1.Regulation of assembly and disassembly 1.Formation of network by associated.
Dr Mah Jabeen Muneera Assistant Professor Department of Anatomy KEMU.
Last Class 1. GPCR signaling: 2. Enzyme-linked Receptor signaling:
The Cytoskeleton Functions
Types of membrane proteins
The Cytoskeleton Assembly and Dynamic Structure
Conference on the CYTOSKELETON
CYTOSKELETON intermediate filaments: nm diameter fibers
درس دوم اسکلت سلولی و ضمائم تحرک سلول ها
Nicole Tegtmeyer, Steffen Backert  Cell Host & Microbe 
Contributions of molecular motor enzymes to vesicle-based protein transport in gastrointestinal epithelial cells  Mark A. McNiven, Kimberly J. Marlowe 
Spatial Control of Actin Filament Assembly
Eric A. Vitriol, James Q. Zheng  Neuron 
Thomas D Pollard, Gary G Borisy  Cell 
Eric A. Vitriol, James Q. Zheng  Neuron 
Model of local recycling of the actin network in L
Cytoskeleton: CLASPing the end to the edge
Polymer Motors: Pushing out the Front and Pulling up the Back
Fusion and Fission Cell
Presentation transcript:

Controlled by Actin Binding Proteins Actin Filament Assembly, Growth, Branching, Capping and Disassembly are Controlled by Actin Binding Proteins

Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes Matthew D. Welch et al. The pathogenic bacterium Listeria monocytogenes is capable of directed movement within the cytoplasm of infected host cells. Propulsion is thought to be driven by actin polymerization at the bacterial cell surface and moving bacteria leave in their wake a tail of actin filaments. Actin assembly by L. monocytogenes requires the bacterial surface protein ActA and protein components present in host cell cytoplasm. We have purified an eight-polypeptide complex that possesses the properties of the host-cell actin polymerization factor. The pure complex is sufficient to initiate ActA-dependent actin polymerization at the surface of L. monocytogenes, and is required to mediate actin tail formation and motility. Two subunits of this protein complex are actin-related proteins (ARPs) belonging to the Arp2 and Arp3 subfamilies. The Arp3 subunit localizes to the surface of stationary bacteria and the tails of motile bacteria in tissue culture cells infected with L. monocytogenes; this is consistent with a role for the complex in promoting actin assembly in vivo. The activity and subunit composition of the Arp2/3 complex suggests that it forms a template that nucleates actin polymerization.

Actin Bundling a-actinin and fimbrin cross-link actin filaments

Actin Bundling a-actinin and fimbrin cross-link actin filaments

Diversity of Actin Bundling Proteins a-actinin, fimbrin, and villin form parallel cables -stiff connections between actin-binding domains Spectrin and filamin form actin filament webs of gels -flexible connections between actin-binding domains (filamanin) -stiff bent connection (spectrin)

Microvilli (mv) are specialized actin-based structures Increases surface area for Absorption by20-fold Villin and fimbrin cross link 20-30 actin filaments in mv Villin introduced into fibroblasts Induces microvilli formation

Filamin makes 3D Crosslinks

Actin binds to Other Proteins That Influence its Function

CHI- complex haploinsufficiency and actin haploinsufficiency has been gaining in appreciation as an important influence on human disease human individuals may have as many as 45 CHI gene pairs

Actin Filament Crosslinking

Spectrin, glycophorin, and band 3 Correspond to >60% of membrane Proteins in RBCs Spectrin is the most abundant, 25% 250000 copies/cell Principle component of the cytoskeleton If dissociated, the red blood cell fragments into vesicles

Spectrin forms heterodimers And tetramers, and is part of a Junctional complex Ankyrin joins spectrin to the PM by The TM protein band 3 Look how small actin filaments are here! Why? This weblike structure allows cells to deform in capillaries Spectrin mutations cause round and fragile RBCs and anemia

PTEN and polarity: phosphodiesterase and an inhibitor of the phospho-AKT pathway by removing the 3' phosphate group of PI (3,4,5)P3.

Actin Is Required to Form Focal Adhesions

Formation of Intercellular Junctions during Wound Healing Mammary epithelial cell monolayer was grown to confluence and mechanically wounded. Cells at the free edge lose their intercellular junctions, form lamellipodia and migrate to fill the empty space. At the last stage of healing, cells from opposite sides of the wound have made contact. Actin (red; rhodamine phalloidin) and occludin (blue, anti-occludin antibody) appear at the newly forming intercellular contacts (arrow). Nuclei were stained green (Syto) to help identify cells.

Reorganizing the cytoskeleton is critical for wound healing Triple label showing microtubules (red), F-actin (green) and myosin-2 (blue) around wound made in a Xenopus oocyte. The microtubules are organized into a radial array that encloses the ring of F-actin and myosin-2B.

Technology: Novel antisense approach provides a rapid spatially and temporally controllable knockdown of specific connexin proteins. A single topical application of Cx43 antisense gel results in a dramatic increase in the rate of wound closure.

Molecular Motors Allow motion

Actin depolymerizing factor (ADF)Cofilin binds to Actin It twists the filament, making it easier for subunits at the Minus end of the filament to dissassemble

Importantly, the stimulus-responsive function of ADF/cofilin is regulated by phosphorylation of a single serine residue. In response to stimuli, ADF is dephosphorylated. The stimuli, such as growth factors, chemotactic peptides, or agents increasing the levels of [Ca2+]i and cAMP, promote the reorganization of the actin cytoskeleton. In quiescent cells, ADF/cofilin appears diffusely distributed in the cytoplasm, the activated (dephosphorylated) protein translocates to regions of the cells where actin filaments are highly dynamic like the leading edge of ruffled membranes, the cleavage furrow of dividing cells, or the neuronal growth clone. Dephosphorylation correlates with increased motility and extension of cellular processes (Carlier et al., 1999). ADF/cofilin increases the turnover of actin filaments which powers actin motility.