Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.
Advertisements

Femtosecond lasers István Robel
What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Inverse Cyclotrons for Intense Muon Beams – Phase I Kevin Paul Tech-X Corporation Don Summers University of Mississippi ABSTRACT: I will summarize the.
High Intensity Laser Electron Scattering David D. Meyerhofer IEEE Journal of Quantum Electronics, Vol. 33, No. 11, November 1997.
Rotating Wall/ Centrifugal Separation John Bollinger, NIST-Boulder Outline ● Penning-Malmberg trap – radial confinement due to angular momentum ● Methods.
PROPERTIES OF TRAPPED Ca+ IONS
electrostatic ion beam trap
Ion-trap quantum computation Summer School of CQIQC 2012 Laser Lab Prof. Vasant Natarajan Department of Physics Indian Institute of Science Bangalore May.
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Compton Effect 1923 Compton performed an experiment which supported this idea directed a beam of x-rays of wavelength  onto a carbon target x-rays are.
Generation of short pulses
EE 403 (or 503) Introduction to plasma Processing Fall 2011 Title of the project Your name.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Guillermina Ramirez San Juan
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Chapter 2: Particle Properties of Waves
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Lund University From Rydberg to Atto physic Is matter a wave ?
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
International Symposium on Heavy Ion Inertial Fusion June 2004 Plasma Physics Laboratory, Princeton University “Stopping.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
A mass-purification method for REX beams
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Laser Cooling Molecules Joe Velasquez, III*, Peter L. Walstrom †, and Michael D. Di Rosa* * Chemistry Division, Physical Chemistry and Applied Spectroscopy.
6E5  Dispersion relation of dust acoustic waves in a DC glow discharge plasma Bob Merlino, Ross Fisher, Univ. Iowa Ed Thomas, Jr. Auburn Univ. Work supported.
Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Zeudi Mazzotta* On behalf of the AEgIS collaboration from Università degli studi di Milano Istituto Nazionale di Fisica Nucleare.
Lecture 5. Particle Properties of Waves (cont’d)
Compton Scattering When light encounters charged particles, the particles will interact with the light and cause some of the light to be scattered. incident.
PHYS 172: Modern Mechanics Lecture 14 – Energy Quantization Read Summer 2012.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Testing antimatter gravity: the Aegis experiment at Cern Phd Student: Michele Sacerdoti Phd Workshop: 12-13/10/2015 Supervisors: Fabrizio Castelli, Marco.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Resonant dipole-dipole energy transfer
Wave packet: Superposition principle
Preparing antihydrogen at rest for the free fall in
Siara Fabbri University of Manchester
Gravitational Quantum States of Antihydrogen
Details of Equation-of-State and Opacity Models
Ion Trap Quantum Computing and Teleportation
A. T. M. Anishur Rahman & Peter F. Barker
Gross Properties of Nuclei
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes Heinrich Ferdinand Schmidt Kaler Sebastian Wolf

Outline H + motion control requirements Capture and cooling challenges Doppler cooling Sideband cooling Adiabatic ramp down of the trapping potential

GBAR overview Gravitational Behaviour of Antimatter at Rest

g 30 cm Time of flight measurment of g H initial velocity  v 0 < 1 m/s Accurate measurment of g < 1 % T ~ 100 µK What does v 0 = 1m/s mean for a trapped H ? Quantum harmonic oscillator m = kg  v 0 < 1 m/s  < 2  x 5 MHz Ground state State-of-the-art in quantum particle confinement

Could we use H laser cooling at = 121 nm ? Doppler limit Recoil limit  = 2  100 MHz T D = 2400 µK T R = 650 µK v D ~ 8 m/s v R ~ 3,3 m/s > 1 m/s The idea of J. Walz and T. Hänsch 1.Produce H + ions 2.Trap and cool H + ions to the µK range 3.Photodetach the excess positron to get H at rest 4.Observe the free fall General Relativity and Gravitation 36, pp (2004) A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms H + = p e + e +

Reaction chamber H + Capture and cooling by laser cooled Be + ions Threshold Photodetachment =1.7 µm H at rest g p e+e+ H+H+ 30 cm Cooling challenges Last Gbar steps laser Kinetic energy keV Temperature eV K Trapped particule Temperature 3 neV 20 µK ÷ Classical world Frontiers of Quantum world

H + cooling method ?  Buffer gas cooling Direct laser cooling Sympathetic cooling by laser cooled Be + through Coulomb interaction 2 mm H+H+ Step 1 Capture in a linear Paul trap and Doppler sympathetic cooling with a Be + ion cloud → 0.47 mK Step 2 Transfer to precision trap and Raman side band cooling on a Be + / H + ion pair → 100 µK Step 3 Adiabatic ramp down of the trapping potential → 20 µK, v << 1 m/s

Timing AD + ELENA period 100 s 313 nm at saturation intensity H + life time ~ 1 s hollow beam ~ 10 s laser Photodetachment by 313 nm Be + cooling laser

Step 1 H + capture and Doppler sympathetic cooling time

Capture efficiency Be + laser cooled ions 1 keV H + ions 1000… 0 V Input end-caps Output end-caps time U biais =980 V H + intake 0 V   Versus intake delay Versus initial temperature (eV) eV Biased linear RF Paul trap

Doppler sympathetic cooling time 600 Be + H+H+ Axial trapping potential How long does it take ?

Plasma physics n = 3 x m -3 q 1 = q 2 = 1,6 x C m H + = 1,67 x kg m r = 9/10 m H +

H+H+ Axial trapping potential L = 0,8 mm Oscillating projectile in a finite size plasma Harmonic axial potentialT = 0,33 µs ! Conclusion Stopping time ~

Numerical simulations Time dependant RF trapping forces Exact Coulomb interaction N 2 terms 37 Flop per term Laser cooling absorption momentum kicks spontaneous emission stimulated emission Injection of sympathetically cooled ions on the trap axis Parallel implementation: CPU FORTRAN and GPU CUDA Thanks to Pierre Dupré ions

Small  t Too large  t NFlopCPU 20 cores 100 Gflop/s GPU Titan 1,3 Tflop/s Multi GPU days 7 hrs days18 days18 days /N GPU Time steps < 0,2 ns for 13 MHz RF adaptative time step down to 1 ps for Coulomb collisions 10 ms  t> = 10 ps

vzvz Sympathetically cooled H + trajectory Initial energy 53 meV (600 K) stopping time with 600 Be + 53 meV ~ 2 ms 1 eV ~ 800 ms 10 eV ~ 80 s 600 Be +

H 2 + ion, 232 meV stopping time ~ 8 ms 1 eV 144 ms 10 eV 14 s a th = a exp =

Conclusion on Doppler cooling Should work with < 10 eV projectile ions Sligthly faster with bigger Be + ion clouds Experimental evidence 40 Ar 13+ / Be + J. Crespo, Heidelberg tests with Ca + /Be + in Mainz Be + /H + in Paris 600 → 6000 → L ~ N 1/3 Lisa Schmöger,….. and J. R. Crespo López-Urrutia Review of Scientific Instruments 86 (2015)

Step 2 Raman sideband cooling 2 mm Mainz precision trap H + /Be+ ion pair

Precision trap – motional couplings z x,y Be + H+H+ Two coupled oscillators in an external potential T. Hasegawa, Phys. Rev. A 83, (2011) J. B. Wübbena, S. Amairi, O. Mandel, P.O. Schmidt, Phys. Rev. A 85, (2012) 1D 3D normal modes in phase mode out of phase mode individual ion modes x, y, z z trapping DC potentials x,y trapping RF effective potentials Coulomb interaction coupling Newton equations equilibrium positions small oscillations

m lc /m sc b12b12 z motion x,y motion Precision trap – motional couplings m LC /m SC  1 b 1 = 50 % b 2 = 50 % m LC /m SC = 9/1 b 1 = %b 2 = 1.69 % Efficient sympathetic cooling x,y ? L. Hilico & al, Int. J. of Modern Physics, Conference Series 30, (2014)

Relevant Be + energy levels nm 2 S 1/2 2 P 1/2 2 P 3/2 F=0, 1, 2, 3 F=1, 2  hfs = 1.25 GHz Electronic levels Motional levels n=1 n=0 … Harmonic oscillator Objective : prepare F=2 F=1 few 100 kHz to few MHz Ion pair motional ground state

Raman side band cooling, NIST nm 2 S 1/2 2 P 1/2 2 P 3/2 F=0, 1, 2, 3 F=1, 2 Stimulated Raman transition Spontaneous Raman transitions n=3 n=2       hfs -  i   hfs = 1.25 GHz  ~ tens of GHz Be + H+H+  vibr

Raman side band cooling Stimulated Raman transition no spontaneous emission coherent process n=3 n=2 Population transfert probability Lamb Dicke parameter For n → n-1,  pulse duration Single ionb 1 = 13 modes  ~ 100 µs /n/mode Be + /H + b 1z = modesx 4 b 1x,y = modesx 80 ~ 10 ms < 0.84 s  Rabi oscillation

Step 3 Trapping potential adiabatic ramp down

For side band cooling as large as possible For H + velocity as small as possible Idea use a tight trap for coling slowly ramp down the trap steepness after cooling within ~ 0.1 s to get  ’s ~ 10 … 100 kHz To be tested in Mainz on Ca + ions

Experimental progress

313 nm laser : ready Next steps H + injection Capture trap / precision trap Cryo assembly design

Conclusion Capture and Doppler cooling of < 10 eV H + in a linear Paul trap Transfer to precision trap Doppler and ground state cooling in precision trap OK ANR BESCOOL ITN ComiQ