Supplemental Materials of Two conserved oligosaccharyltransferase catalytic subunits required for N-glycosylation exist in Spartina alterniflora Luyi Jiang.

Slides:



Advertisements
Similar presentations
RAPD Randomly Amplified Polymorphic DNA
Advertisements

BME 130 – Genomes Lecture 7 Genome Annotation I – Gene finding & function predictions.
PCR. PCR AMPLIFICATION PCR APPLICATIONS b MOLECULAR BIOLOGY b ENVIRONMENTAL SCIENCE b FORENSIC/MEDICAL SCIENCE b BIOTECHNOLOGY b GENETICS b GENE CLONING.
Fig. S1 A622 1 MVVSEKSKILIIGGTGYIGKYLVETSAKSGHPTFALIRESTLKNPEKSKLIDTFKSYGVT 60 A622L V V A622.
Remember the limitations? –You must know the sequence of the primer sites to use PCR –How do you go about sequencing regions of a genome about which you.
Expression of the Genome The transcriptome. Decoding the Genetic Information  Information encoded in nucleotide sequences contained in discrete units.
Chapter 6 PCR and in vitro Mutagenesis A. Basic features of PCR 1. PCR is a cell-free method of DNA cloning standard PCR reaction is a selective DNA amplification.
Fig. S1 Mass spectra analysis of XXT4 reaction products demonstrating xylosyltransferase activity towards cellohexaose substrate. Predominant peaks represent.
Analysis of the atp9 5‘ trailer A B At5S-5 Atatp9.Endo.Mega.A atp9 At5S-Mega.R (-239) (-84/- 83) (+180) 5S rRNA 5’ 3’ atp9 mRNA atp9 pre-mRNA atp9 5’ leader.
The Polymerase Chain Reaction Some milestones In molecular biology recognised by the award of the Nobel prize.
Molecular Biology II Lecture 1 OrR. Restriction Endonuclease (sticky end)
東京大学 THE U NIVERSITY OF T OKYO Udayana University Amplifications of Terminal Ends of Newcastle Disease Virus Genome by Rapid Amplification of Complementary.
WT#3#5#7#9#11#14#15#20#25#30 35S::JAZ13 Root length ratio * * * * * * * * * * Figure S2. Overexpression of native (untagged)
Figure S1. RACE mapped transcription starts and polyA signals of Ogre CL5 and Ogre CL5del and putative splice site of Ogre CL5 and Ogre CL5del in Silene.
Fig. S1: Fingerprinting of three BAC clones from different accessions of wild rice species with the AA genome constitution. The BAC DNAs were completely.
MdSFBB3-alpha MSHVRESETPEDRVVEILSRLPPKSLMRFKCIHKSWFSLINNLSFVAKHLSNSVDNKLSSSTCILLNRSQAHIFPDQSWKQEVFWSMINFSIDSDENNLHYDVEDLN-IP 109 MdSFBB3-beta MSQVHESETPEDKVVEILCRLPPKSLMRFKCIRKSWCTLINRPSFVAKHLNNSVDNKLSSSTCILLNRSQAHIFPDQSWKQEVFWSTINLSIDSDEHNLHYDVEDLI-IP.
Supplemental Fig. S1 A B AtMYBS aa AtMYBS
22 kDa a-coixin gene cluster
Quantitative Detection and Differentiation of Human Herpesvirus 6 Subtypes in Bone Marrow Transplant Patients by Using a Single Real-Time Polymerase Chain.
Schematic drawing of the human X chromosome and physical map the Xp interval carrying the ND gene. A 640-kb yeast artificial chromosome (YAC) clone was.
Supplemental Figure 1 A) B) C)
Somatic Mutation of the 5′ Noncoding Region of the BCL-6 Gene Is Associated with Intraclonal Diversity and Clonal Selection in Histological Transformation.
Supplemental Figure 2. (A) AtplaIVA-1 and AtplaIVA-2 null transcription lines for AtPLAIVA mRNA. RNAs from the relevant wild type Col were isolated.
PCR Polymerase Chain Reaction
Reads aligned into contigs
Supplementary Figure 1 A B wild type ΔacsS
Fig. S Fig. S2 Cre-mediated recombination in vivo. G2 mice displaying high levels of GFP were crossed.
by S. Kangsadalampai, and P.G. Board
Volume 6, Issue 4, Pages (October 2000)
Long terminal repeats of porcine endogenous retroviruses in Sus scrofa
Step 1: amplification and cloning procedures
PCR genotype analysis to determine RNP-mediated knockout efficiency in C. lusitaniae. PCR genotype analysis to determine RNP-mediated knockout efficiency.
Vav‐1 gene‐targeting strategy.
A spliceosomal intron of mitochondrial DNA origin
Jayne Griffiths, Marco Catoni, Mayumi Iwasaki, Jerzy Paszkowski 
Dan Ding, Kaiyuan Chen, Yuedan Chen, Hong Li, Kabin Xie 
Nienke van der Stoep, James R Gorman, Frederick W Alt  Immunity 
Mutation Spectrum of the Survival of Motor Neuron 1 and Functional Analysis of Variants in Chinese Spinal Muscular Atrophy  Yu-jin Qu, Jin-li Bai, Yan-yan.
by Wen-feng Xu, Zhi-wei Xie, Dominic W. Chung, and Earl W. Davie
Understanding a Genome Sequence
The Rhesus Macaque as an Animal Model for Hemophilia B Gene Therapy
Volume 84, Issue 3, Pages (February 1996)
Volume 156, Issue 4, Pages (February 2014)
Investigation of the human stem cell factor KIT ligand gene, KITLG, in women with 46,XX spontaneous premature ovarian failure  Emily S. Hui, B.A., Ekemini.
The c.1364C>A (p.A455E) Mutation in the CFTR Pseudogene Results in an Incorrectly Assigned Carrier Status by a Commonly Used Screening Platform  Kristin.
Supplemental Figure 3 A B C T-DNA 1 2 RGLG1 2329bp 3 T-DNA 1 2 RGLG2
Molecular cloning of pms916 salt hypersensitive T-DNA mutant.
Structure of the GM2A Gene: Identification of an Exon 2 Nonsense Mutation and a Naturally Occurring Transcript with an In-Frame Deletion of Exon 2  Biao.
Schematic diagrams of genomic structure, the strategy for genomic cDNA cloning, and molecular characterization of unique features of three emergent U.S.
Gene expression analysis as a tool for age estimation of blowfly pupae
Comprehensive Mutation Analysis of the CYP21A2 Gene
RNA-Guided Genome Editing in Plants Using a CRISPR–Cas System
Tamar Ratner, Ron Piran, Natasha Jonoska, Ehud Keinan 
Understanding a Genome Sequence
AID Is Required for c-myc/IgH Chromosome Translocations In Vivo
Genome-wide Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System
Characterization and Mutation Analysis of Human LEFTY A and LEFTY B, Homologues of Murine Genes Implicated in Left-Right Axis Development  K. Kosaki,
A Mutation in the V1 Domain of K16 is Responsible for Unilateral Palmoplantar Verrucous Nevus  Alessandro Terrinoni, Vincenzo De Laurenzi, Eleonora Candi,
Genomic structure of LTBP-4 around the 3rd 8-Cys repeat.
David A. Norris, Brian L. Kotzin  Journal of Investigative Dermatology 
Expression of multiple forms of MEL1 gene products.
M L L L V L L V V L I L L I V R R Predicted transmembrane domain
Mutation of the Ca2+ Channel β Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (lh) Mouse  Daniel L Burgess, Julie M Jones,
Transcriptional Activation of Endogenous Retroviral Sequences in Human Epidermal Keratinocytes by UVB Irradiation  Christine Hohenadl, Herbert Germaier,
Construction of sgRNA expression cassette.
Exon Skipping in IVD RNA Processing in Isovaleric Acidemia Caused by Point Mutations in the Coding Region of the IVD Gene  Jerry Vockley, Peter K. Rogan,
Figure Genetic characterization of the novel GYG1 gene mutation (A) GYG1_cDNA sequence and position of primers used. Genetic characterization of the novel.
Fang Wang, Yunfeng Wang, Jie Ding, Jiyun Yang  Kidney International 
Technology schematic for phenotypic tracking of single molecularly defined B-lineage clones. Technology schematic for phenotypic tracking of single molecularly.
Presentation transcript:

Supplemental Materials of Two conserved oligosaccharyltransferase catalytic subunits required for N-glycosylation exist in Spartina alterniflora Luyi Jiang #,1, Xin Zhu #,1, Jinmei Chen 1, Deyue Yang 1, Changfang Zhou 1, Zhi Hong 1* 1 School of life sciences, Nanjing University, 2 Hankou Road, Nanjing, Jiangsu , China

A B Figure S1. The schematic diagram of primer position for cloning SaSTT3A and SaSTT3B The primers for cloning SaSTT3A (A) and SaSTT3B (B)were marked. The arrows in the figure indicated the direction that the primers amplified. The primers on the first lines in both (A) and (B) were used for RACE to clone the sequences of 5 and 3 untranslated regions. The primers on the second lines were used for hi-TAIL to get the sequences in 5 end. The primers used for getting coding sequence and genomic DNA were listed in the third lines and fourth lines, respectively. Table S1 and S2 stated the above primers in detail.

Table S1 Primers for cDNA amplification Primer NamePrimer SequenceRemark cSaSTT3A-1F5’-GTTGCAGGCAGCTATGATAATG-3’ primers for CDS PCR cSaSTT3A-1R5’-CCAGAAATGATGCGAAGTGCTC-3’ cSaSTT3A-2F5’-TGGGCRGCAGCTGAAGCGTAC-3’ primers for CDS PCR cSaSTT3A-2R5’-ACCACCTCCTAGCGAACCATCC-3’ LAD15’-ACGATGGACTCCAGAG (G/C/A)N(G/C/A)NNNGGAA-3’ arbitrary degenerate primers for hi-TAIL PCR LAD25’-ACGATGGACTCCAGAG (G/C/T)N(G/C/T)NNNGGTT-3’ LAD35’-ACGATGGACTCCAGAG(G/C/A)(G/C/A)N(G/C/A)NNNCCAA-3’ LAD45’-ACGATGGACTCCAGAG(G/C/T)(G/A/T)N(G/C/T)NNNCGGT-3’ AC5’-ACGATGGACTCCAGAG-3’ SaSTT3A-SPR05’-GTACTAATGCTGCCAGAAGTGTTCCC-3’ gene specific primers for hi- TAIL PCR SaSTT3A-SPR15’-ACGATGGACTCCAGTCGACCAGTTACGATACACAAGAGCAC-3’ SaSTT3A-SPR25’-GCGTTGCATAGAAGAGTGATCCAGTG-3’ UPML5’-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCGAGT-3’ adaptor primers for RACE UPMS5’-CTAATACGACTCACTATAGGGC-3’ ASP5’-AAGCAGTGGTATCAACGCAGAGTAC-3’ SaSTT3A-5GSPR15’-CCAGAAATGATGCGAAGTGCTC-3’ gene specific primers for RACE SaSTT3A-5GSPR25’-TAACCTCCCCAGGAGCAGACC-3’ SaSTT3A-3GSPF15’-AGTGGCAGAGAGTGCTTCTG-3’ SaSTT3A-3GSPF25’-AGGTTGCTTCCTGGTGGGACTATG-3’ cSaSTT3B-1F5’-GCATCGATGAATTCTCACSTTCTACYTCTTCGTG-3’ primers for CDS PCR cSaSTT3B-1R5’-GCTCTAGACTCGAGAAGCAGRGAGTAAAAYCGTC-3’ cSaSTT3B-2F5’-TGAAATACATGCTAAATGATGCCAG-3’ primers for CDS PCR cSaSTT3B-2R5’-ATAGCHGCATTSTGTTGGAATGG-3’ cSaSTT3B-3F15’-ATGGTGCGGTTAATTCTTGTTGCAGCAC-3’ primers for CDS PCR cSaSTT3B-3F25’-TACACTGCACTTGGGTGACATCTGAGGC-3’ cSaSTT3B-3R5’-THGGGGGTTTSACCTTGTATATGCGCAC-3’ SaSTT3B- SPR05’-AAAACCTGTAACAGGAAGAAGACTCCC-3’ gene specific primers for hi- TAIL PCR SaSTT3B- SPR15’-ACGATGGACTCCAGTCCAGAGTYCCAAGCACATACATGC-3’ SaSTT3B- SPR25’-TAGAAGTAGCCGAAGGCCGAGGC-3’ SaSTT3B-5GSPR15’-AAAACCTGTAACAGGAAGAAGACTCCC-3’ gene specific primers for RACE SaSTT3B-5GSPR25’-TAGAAGTAGCCGAAGGCCGAGGC-3’ SaSTT3B-3GSPF15’-TACACTGCACTTGGGTGACATCTGAAGC-3’ SaSTT3B-3GSPF25’CAACAGAGTATGGAAAACCTCCAGC-3’

Table S2 Primers for genomic DNA amplification Primer NamePrimer SequenceRemark gSaSTT3A-1F5’-TGGCGGGAAACTCCGCAAC-3’ primers for gDNA PCR gSaSTT3A-1R5’-CCAGAAATGATGCAAAGTGCTC-3’ gSaSTT3A-1S5’-CTTCCTGGGCTACTTACCTC-3’primer for sequencing gSaSTT3A-2F5’-TGCAGGCAGCTATGATAATGAAG-3’ primers for gDNA PCR gSaSTT3A-2R5’-TCAGACAAAGGCAAGAAGCATG-3’ gSaSTT3A-2S5’-GTCGTTACTCTTCACGAC-3’primer for sequencing gSaSTT3A-3F5’-ACATCCCCATCATCGCCAGTG-3’ primers for gDNA PCR gSaSTT3A-3R5’-TGTCATCACTAGGGTAGCCAA-3’ gSaSTT3A-3S15’-ACAATTGAAGGAGCCGAGTACGC-3’ primers for sequencing gSaSTT3A-3S25’-AGTGGCAGAGAGTGCTTCTG-3’ gSaSTT3A-4F5’-AGGTTGCTTCCTGGTGGGACTATG-3’ primers for gDNA PCR gSaSTT3A-4R5’-GGGGTACCCTATTGCCATGGGTTCTTTCG-3’ gSaSTT3B-1F5’-AGTCCAACTCCTCGCTAAGC-3’ primers for gDNA PCR gSaSTT3B-1R5’-AATCTGTTTCACCAGCATGCC-3’ gSaSTT3B-1S15’-GCATCGATGAATTCTCACSTTCTACYTCTTCGTG-3’ primers for sequencing gSaSTT3B-1S25’-GCTCTAGACTCGAGAAGCAGRGAGTAAAAYCGTC-3’ gSaSTT3B-2F5’-TGAAATACATGCTAAATGATGCCAG-3’ primers for gDNA PCR gSaSTT3B-2R5’-ACACTGCTCTTGAACTTGTG-3’ gSaSTT3B-2S15’-ACATAATTCACATCCAGTG-3’ primers for sequencing gSaSTT3B-2S25’-ATGGTGCGGTTAATTCTTGTTGCAGCAC-3’ gSaSTT3B-3F5’-TACACTGCACTTGGGTGACATCTGAGGC-3’ primers for gDNA PCR gSaSTT3B-3R5’-TCAGGACCTGTTCTTAGGGGGTTT-3’ gSaSTT3B-3S5’-THGGGGGTTTSACCTTGTATATGCGCAC-3’primer for sequencing gSaSTT3B-4F5’-CTGGACACTGTGATCTTTCCTG-3’ primers for gDNA PCR gSaSTT3B-4R5’-AGGAGTGTTCTGACGAAGCC-3’ gSaSTT3B-4S5’-GCTGGGCTGTCATTATTAGGAA-3’primer for sequencing

Table S3 Primers of construction for 35S:SaSTT3A/SaSTT3B, AtSTT3A:SaSTT3A/3B and RT-PCR Primer NamePrimer SequenceRemark SaSTT3A-Kpn Ⅰ -F 5’-GGGGTACCATGGCGGAGCCCGATGTGTCC-3’ primers for construction of 35S:SaSTT3A SaSTT3A-Sal Ⅰ -R 5’-GCGTCGACCTATTGCCATGGGTTCTTTCG-3’ SaSTT3B-EcoR Ⅰ -F 5’-CGAATTCATGGCGACCGCCGCGCTGGACTTCC-3’ primers for construction of 35S:SaSTT3B SaSTT3A-Pst Ⅰ -R 5’-AACTGCAGCACCTCAGGACCTGTTCTTAGG-3’ SaSTT3A-Afl Ⅱ -F 5’-TTACTTAAGAAATGGCGGAGCCCGATGTGTCC-3’ primers for construction of AtSTT3A:SaSTT3A SaSTT3A-Nhe Ⅰ -R 5’-CTAGCTAGCTATTGCCATGGGTTCTTTCG-3’ SaSTT3B-Afl Ⅱ -F 5’-TTACTTAAGATGGCGACCGCCGCGCTGGACTTCC-3’ primers for construction of AtSTT3A:SaSTT3B SaSTT3B-Nhe Ⅰ -R 5’- GGCTAGCACCTCAGGACCTGTTCTTAG-3’ cSaSTT3A-spe-F5’-AGTGTTGCCAGTACAAGCTC-3’ primers for RT-PCR of SaSTT3A cSaSTT3A-spe-R5’-TGTCATCACTAGGGTAGCCAA-3’ cSaSTT3B-spe-F5’-GTAAAAGCCCGCAGGTTGC-3’ primers for RT-PCR of SaSTT3B cSaSTT3B-spe-R5’-CATTGCACGCCCAACAGTAG-3’ cAtSTT3A-spe-F5’-ATTGCAAGTGTCAGTGAACATCAAC-3’ primers for RT-PCR of AtSTT3A cAtSTT3A-spe-R5’-CCTTGTCAGTCTTACCAGCAGAA-3’