Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.

Slides:



Advertisements
Similar presentations
Topological Insulators
Advertisements

Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Mechanism of the Verwey transition in magnetite Fe3O4
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Spectroscopy at the Particle Threshold H. Lenske 1.
Aretouli E. Kleopatra 20/2/15 NCSR DEMOKRITOS, Athens, Greece
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Positronium in Quartz: Surface and Bulk Bernardo Barbiellini Northeastern University Boston, Massachusetts.
Ultrahigh-resolution spin-resolved ARPES of novel low-dimensional systems Seigo Souma Tohoku University May 31, 2010 A. Takayama, K. Sugawara, T. Sato,
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
Half-Heusler Compounds for Topological Insulators Joshua Sayre Materials 286G May 26, 2010.
Topological Superconductors
Bulk Topological Superconductor. Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2.
Status of TI Materials. Not continuously deformable Topological Invariant Topology & Topological Invariant Number of Holes Manifold of wave functions.
IRIDATES Bill Flaherty Materials 286K, UCSB Dec. 8 th, 2014.
Spin transport in spin-orbit coupled bands
Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.
X-ray Emission Spectroscopy Cormac McGuinness Physics Department Trinity College Dublin Soft x-ray emission and resonant inelastic.
Majorana Fermions and Topological Insulators
Research fueled by: MRS Spring Meeting San Francisco April 28th 2011 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Topological thermoelectrics.
Topological Insulators and Beyond
Organizing Principles for Understanding Matter
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Electronic Structure of A IV B VI · m A 2 V B 3 VI (A IV = Ge,Sn,Pb; A V = Bi,Sb; B VI = Te,Se; m=1-3) Topological Insulators S.V. Eremeev, T.V. Menshchikova,
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Topology and solid state physics
Atomic-scale Engeered Spins at a Surface
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
Photoemission Spectroscopy Dr. Xiaoyu Cui May Surface Canada workshop.
1 Topological Quantum Phenomena and Gauge Theories Kyoto University, YITP, Masatoshi SATO.
Thermoelectric properties of ultra-thin Bi 2 Te 3 films Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical and Computer.
Berry Phase Effects on Electronic Properties
Sergey Savrasov Department of Physics, University of California, Davis Turning Band Insulators into Exotic Superconductors Xiangang Wan Nanjing University.
Topological Insulators and Topological Band Theory
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Infrared and magneto- optical studies of topological insulators Saša V. Ðorđević Department of Physics.
Electrons on the brink: Fractal patterns may be key to semiconductor magnetism Ali Yazdani, Princeton University, DMR Princeton-led team of scientists.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility.
Topological Insulators Effects of spin on transport of electrons in solids.
ARPES studies of unconventional
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Dirac’s inspiration in the search for topological insulators
Topological Insulators
Flat Band Nanostructures Vito Scarola
Topological Insulators
Gated silicene as a tunable source of nearly 100% spin-polarized electrons Department of physics, National Tsing Hua University, Taiwan 張泰榕 (Tay-Rong Chang)
Lei Hao (郝雷) and Ting-Kuo Lee (李定国)
Search for Novel Quantum Phases in
Introduction to topological insulators and STM/S on TIs
Electronic structure of topological insulators and superconductors
Control of Spin-Orbit Splitting in 2D Semiconductors
Topological Insulators
Band structure: Semiconductor
Lecture 3: Topological insulators
Measuring the quantum numbers E,k of electrons in a solid
X-ray Emission Spectroscopy
Optical signature of topological insulator
Observation of Fermi arc surface states in a topological metal
Down the Rabbit Hole: Sinking Electrons in a Weyl Sea
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Fig. 1 The MB2T4-family materials (MB2T4: M = transition-metal or rare-earth element, B = Bi or Sb, T = Te, Se, or S) using MnBi2Te4 as an example. The.
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University

Physics 2, 108 (2009)

Outline Introduction Topological insulator materials – Bi 2 Te 3 spin texture, hexagonal warping – Half-Heuslers, Li 2 AgSb – GeBi 2 Te 4 – TlBiSe 2 Topological phase transition Conclusions

Topological Insulators New possibilities for – Fundamental physics – Spintronics – Quantum computing – Novel magnetism and superconductivity – Applications

χ Topology Gaussian curvature Berry connection Berry curvature geodesic curvature χ=2χ=0 χ=-2

Adiabatic transformation χ=2 Energy [eV] L Γ X W EFEF ?

Topological transition χ=2χ=0 Trivial Non-trivial Critical Energy [eV] L Γ X W EFEF

Parity analysis

Metallic surface/edge states Z 2 :odd Z 2 :even Γ M Energy EFEF Γ M Energy EFEF time reversal: E(k, ↑ )=E(-k, ↓ )

Topological phase transition S.-Y. Su et al., Science Express online 31 March 2011 [DOI: /science ]

Determining Band topology Z 2 value: integral over valence bands Adiabatic transformation Parity analysis (inversion symmetry) Surface state dispersion

First-principles calculations DFT/LDA (KKR, LAPW) Tight binding models (Wannier functions) Spectroscopies: Angle resolved photoemission (ARPES) Scanning tunneling microscopy/spectroscopy (STM/STS) Resonant inelastic X-ray scattering (RIXS) Compton profile (CP) First-principles matrix element effect Including interactions beyond DFT/LDA Theoretical Roadmap

First-principles calculations DFT/LDA (KKR, LAPW) Angle resolved photoemission (ARPES) Surface calculation + surface probe + Energy (eV) Single-Dirac-cone surface states in topological insulator Bi 2 Se 3 Prof. Hasan at Princeton U.Prof. Bansil at Northeastern U.

Our Roadmap for New TIs Bi/Sb: multiple FSs, disorder scattering 2 nd Gen, Bi 2 Se 3 /Bi 2 Te 3 : single Dirac cone, large bulk gap, but naturally doped with electrons or holes Half-Heuslers, Li 2 AgSb: tunability of lattice/dopants GeBi 2 Te 4 families: many compounds, single Dirac cone inside gap, more insulating than Bi 2 Se 3 /Bi 2 Te 3 TlBiSe 2 family: single Dirac cone, Dirac point in gap, topological phase transition

Specific TI families Discovered Bi 2 Se 3 –Nat. Phys. 5, 398 (2009). –PRL 103, (2009). –Nature 460, 1101 (2009). Half-Heusler –Nat. Mat. 9, 546 (2010). –PRB 82, (2010). TlBiSe 2 –PRL 105, (2010). –Science in press. [DOI: /science ] Li 2 AgSb - arXiv: GeBi 2 Te 4 - arXiv:

Bi 2 Se 3, Spin-orbit coupling Y. Xia et al., Nature Physics 5, 398 (2009).

Bi 2 Te 3 ARPES D. Hsieh et al., Physical Review Letters 103, (2009). Singly degenerate surface state

Energy kxkx kyky Ideal Dirac cone kyky kxkx E=const. +k ↑ -k ↓ one-to-one spin- momentum locked backward scattering suppressed

Quasiparticle interference (QPI) Without matrix elementWith matrix element

Hsieh et al., NATURE 460, 1101 (2009).

E=200 meV Energy [meV] out-of-plane spin polarization (%) E=150 meV E=50 meV kxkx kyky k x [1/Å] k y [1/Å] Bi 2 Te 3 surface state with spin polarization Γ M K M. Z. Hasan, H. Lin, and A. Bansil, Physics 2, 108 (2009).

Fe doped Bi 2 Te 3 STM interference pattern Exp. Theory Collaboration with Prof. Madhavan STM group at Boston college Y. Okada et. al. Phys. Rev. Lett. in press.

x y z Band insulator Semimetal EFEF s-like J=3/2 Γ Γ TrivialNon-trivial Γ Topological insulator Hg Te CdTeHgTeDistorted HgTe Pt Sb Lu H. Lin et al., Nature Materials 9, 546 (2010).

Half-Heuslers LuPtSbYAuPb abc TiNiSn L Γ X W EFEF Energy (eV) Γ8Γ8 Γ6Γ6 L Γ X W d YPtSb a 0 +2%a 0 Momentum H. Lin et al., Nature Materials 9, 546 (2010).

Half-Heusler family H. Lin et al., Nature Materials 9, 546 (2010).

Li 2 AgSb x y z Sb Ag Li Te Hg Energy (eV) EFEF a 0 +3%a 0 K Γ T K Γ T K Γ T a 0 +3%a 0 c 0 +3%c 0 Momentum H. Lin et al., arXiv:

7-atom layer Te Bi Te Ge Te quintuple layer Te Bi Te Bi Te GeBi 2 Te 4 Bi 2 Te 3 S.-Y. Su et al., arXiv:

9-atom layer Te Bi Te Ge Te quintuple layer Te Bi Te Bi Te Ge Te 7-atom layer quintuple layer 7-atom layer Te Bi Te Ge Te S.-Y. Su et al., arXiv:

GeBi 2 Te 4 K Γ M Energy (eV) S.-Y. Su et al., arXiv:

PbBi 4 Te 7 K Γ M Energy (eV) S.-Y. Su et al., arXiv:

GeBi 2 Te 4 ARPES S.-Y. Su et al., arXiv:

Pseudo PbTe: TlBiTe 2 x y z Te (Pb) + + kyky kxkx kzkz Γ L X [111] Tl Te Bi (Pb) H. Lin et al., Physical Review Letters 105, (2010). 1 Γ 3X 4L PbTe (trivial) SnTe (trivial)

A PbTe supercell PbSnTe 2 TlSbTe 2 L Γ X W Energy [eV] EFEF EFEF BC D L Γ X W Energy [eV] Momentum PbTe SnTe L Γ X E GF PbSnTe 2 TlSbTe 2 EFEF EFEF H. Lin et al., Physical Review Letters 105, (2010). Band folding

AB Trivial Energy [eV] Non-trivial Momentum K Γ M _ _ _ L Γ X W D C Energy [eV] Direct Gap [eV] V a [eV] EFEF EFEF F TlSbTe 2 Z 2 =-1 Critical L Γ X W 0 + E Z 2 =1Z 2 =-1 Z 2 =1 Z 2 =-1 z Te [Å]

S.-Y. Su et al., Science Express online 31 March 2011 [DOI: /science ]

Conclusion We have found several families of topological insulator materials, including Bi 2 Se 3, Half-Heusler compounds, TlBiSe 2, Li 2 AgSb, GeBi 2 Te 4. Unconventional spin texture on single-Dirac-cone topological surface states. Topological insulator materials –Heavy atoms (large spin-orbit coupling) –Structural similarity –Parity analysis and band structure engineering “Best” topological insulator materials –GeBi 2 Te 4 and Bi 2 Te 2 Se –Fermi level inside the bulk gap –Dirac point inside the bulk gap Topological phase transition observed in TlBi(S 1- δ Se δ ) system.

x y z Hg Te HgTe YPtSb Hg Te Kr H. Lin et al., Nature Materials 9, 546 (2010). Pt Sb Y KrHgTe Two tricks for adiabatic transformation Insert noble-gas atoms Change nuclear charge Z continuously