Friedrich-Schiller-University Jena

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

New hardware and setups New short pulse regime Experimental results TW power Future plans on laser development ATF CO 2 LASER progress Vitaly Yakimenko.
CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
Historical Review on the Plasma Based Particle Accelerators Congratulation for opening “Plasma and Space Science Center” Yasushi Nishida Lunghwa University.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Acceleration of particles with lasers at RAL Peter A Norreys Physics Group Leader Central Laser Facility CCLRC Rutherford Appleton Laboratory visiting.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
1D Relativistic Plasma Equations (without laser) cold plasma Consider an electron plasma with density N(x,t), velocity u(x,t), and electric field E(x,t),
1 Pukhov, Meyer-ter-Vehn, PRL 76, 3975 (1996) Laser pulse W/cm 2 plasma box (n e /n c =0.6) B ~ mc  p /e ~ 10 8 Gauss Relativistic electron beam.
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Laser driven particle acceleration
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Eric Esarey W. Leemans, C. Geddes, C. Schroeder, S. Toth,
1 Gas-Filled Capillary Discharge Waveguides Simon Hooker, Tony Gonsalves & Tom Rowlands-Rees Collaborations Alpha-X Basic Technology programme (Dino Jaroszynski.
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Winni Decking Impressions from the Dream Beams Symposium Max-Planck-Institut fuer Quantenoptik (MPQ)
All-optical accelerators
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Stable and Tuneable Laser Plasma Accelerators
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Compact X-ray & Emittance Measurement by Laser Compton Scattering Zhi Zhao Jan. 31, 2014.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Accelerator Laboratory of Tsinghua University Generation, measurement and applications of high brightness electron beam Dao Xiang Apr-17, /37.
Laser-Plasma Acceleration in Sweden Electrons Protons X-rays Claes-Göran Wahlström Department of Physics, Lund University and Lund Laser Centre.
In-Situ Measurements of Laser-Driven Relativistic Electron Currents in Underdense Plasma M.C. Kaluza, H.-P. Schlenvoigt, B. Beleites, F. Ronneberger, and.
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
Particle and x-ray generation by irradiation of gaseous and solid targets with a 100TW laser pulse Oswald Willi Heinrich-Heine University, Düsseldorf Germany.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Malte C. Kaluza Institute of Optics and Quantum Electronics Helmholtz-Institute Jena Friedrich-Schiller-University Jena, Germany Optical Diagnostics for.
Strategies for Future Laser Plasma Accelerators J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Rechatin, & V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
GRK-1203 Workshop Oelde Watching a laser pulse at work
(LASER) PLASMA DIAGNOSTICS
Introduction to Plasma Physics and Plasma-based Acceleration Wakefield acceleration Various images provided by R. Bingham.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Laser wakefield accelerated electrons
Proton-driven plasma wakefield acceleration in hollow plasma
Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko.
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
The 2nd European Advanced Accelerator Concepts Workshop
Laboratoire d’Optique Appliquée
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
Peking University: Jinqing Yu, Ronghao Hu, Haiyang Lu & Xueqing Yan
Short focal length target area: X-ray & ion sources and applications
Introduction to Free Electron Lasers Zhirong Huang
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

Friedrich-Schiller-University Jena Electron acceleration with laser-driven plasma waves: a potential future alternative to conventional accelerators Malte C. Kaluza Institute of Optics and Quantum Electronics and Helmholtz-Institute Jena, Friedrich-Schiller-University Jena

Outline Particle acceleration with lasers Motivation: machine size and specific applications in contrast to conventional particle accelerators. Laser-driven electron acceleration Laser-wakefield acceleration: towards ultra-short, quasi-monoenergetic GeV electron bunches, Visualization of accelerating plasma structure and acceleration fields. Summary

Outline Particle acceleration with lasers Motivation: machine size and specific applications in contrast to conventional particle accelerators. Laser-driven electron acceleration Laser-wakefield acceleration: towards ultra-short, quasi-monoenergetic GeV electron bunches, Visualization of accelerating plasma structure and acceleration fields. Summary

Conventional Particle Accelerators High-energy particle accelerators for protons, heavy ions, electron linacs, electron synchrotrons, are large because of limited acceleration field strength: avoid break-through or ionization  use fully ionized laser-generated plasma as acceleration medium JETI DESY CERN GSI SLAC Diamond

Oscillations in a Plasma negative electrons (mobile) positive ions (immobile)

Oscillations in a Plasma negative electrons (mobile) positive ions (immobile) Plasma frequency: light is reflected (overdense plasma) light can propagate (underdense plasma) refractive index of the plasma

What are Ultra-High Intensities? IL ~ 1021 W/cm2

What are Ultra-High Intensities? IL ~ 1021 W/cm2 ? Focus to a spot with (1 cm)2: I = 1017 W/cm2 (1 mm)2: I = 1019 W/cm2 (0.1 mm)2: I = 1021 W/cm2

JETI – the JEna Multi-TW TI:Sapphire Laser Ultra-Short Pulse CPA Ti:Sapphire Laser wavelength: 800 nm pulse duration: 30 fs pulse energy: 900 mJ peak power: 30 TW focal spot area: <5 mm2 repetition rate: 10 Hz max. intensity: > 1020 W/cm2 M. C. Kaluza • Particle Acceleration with High-Intensity Lasers • ANKA-seminar • 11th November 2009 9

POLARIS – Petawatt Optical Laser Amplifier for Radiation Intensive experimentS Ultra-Short Pulse CPA Yb:Glass Laser wavelength: 1030 nm pulse duration: 150 fs pulse energy: 10…75 J power: 50 TW…0.5 PW focal spot size: <10 mm2 repetition rate: 1/40 Hz max. intensity: ~1021 W/cm2

Generation of Plasma Waves Laser pulse exerts ponderomotive force on plasma electrons: laser pulse plasma electrons

Generation of Plasma Waves Laser pulse exerts ponderomotive force on plasma electrons: laser pulse plasma electrons A co-moving longitudinal electric field is generated due to the associated charge separation. The propagating pulse generates a plasma wave in its wake. Field strength: E ~ 0.1…1 TV/m = 1011…1012 V/m (conventional accelerators: E ~ 107 V/m)

Outline Particle acceleration with lasers Motivation: machine size and specific applications in contrast to conventional particle accelerators. Laser-driven electron acceleration Laser-wakefield acceleration: towards ultra-short, quasi-monoenergetic GeV electron bunches, Visualization of accelerating plasma structure and acceleration fields. Summary

Acceleration with Waves

Laser-Wakefield Acceleration Interaction of a high-intensity laser pulse with a plasma  generation of a plasma wave via its ponderomotive force Image courtesy of A.G.R. Thomas plasma wave (vph,plasma = vgr,laser =   c < c)  modulation of ne, very strong charge separation and longitudinal E-fields (~ 0.1...1 TV/m)  acceleration of quasi-monoenergetic electron bunches

Laser-Wakefield Acceleration Poineering (theoretical) work by A. Pukhov and J. Meyer-ter-Vehn: Appl. Phys. B (2002) formation of a “plasma bubble” (broken plasma wave) by laser pulse  “Bubble acceleration”, generation of quasi-monoenergetic electron pulses

Laser-Wakefield Acceleration ASTRA laser parameters: EL ~ 500 mJ, tL ~ 40…45 fs (Plaser~ 11 TW) Focusing optic: f/20 off-axis parabola Focal spot ~ 20 µm FWHM, IL ~ 1018 W/cm2 S.P.D. Mangles et al., C. Geddes et al., J. Faure et al., Nature (2004)

Laser-Wakefield Acceleration For the first time monoenergetic spectra Epeak ~ 70 MeV (with 11-TW laser!), E/E = 3% Well-collimated electron beam (divergence < 1°) Ultra-short pulse duration (50…170 fs) However: Fluctuation in electron beam parameters: energy of the monoenergetic peak, total beam charge measured, shape of overall spectrum Limited peak energy (J. Faure et al.:170 MeV) over 2-5 millimeters S.P.D. Mangles et al., C. Geddes et al., J. Faure et al., Nature (2004)

Laser-Wakefield Acceleration To reach higher peak energies: increase acceleration/interaction length,  use pre-ionized plasma channel to guide the laser pulse over centimeters: plasma capillary lacc ~ 3 cm Emax ~ 1 GeV 3 km LOASIS @ LBNL W. Leemans, Nature Physics (2006)

Laser-Wakefield Acceleration SLAC Emax ~ 50 GeV lacc ~ 3 km lacc ~ 3 cm Emax ~ 1 GeV LOASIS @ LBNL W. Leemans, Nature Physics (2006)

Further Improvements Experimental challenges: stability: peak energy, pointing, charge, energy width,… measure pulse duration, emittance,… Laser-generated electrons suitable for applications? (realization of secondary radiation sources, injector for conventional post-accelerators,…) Find suitable diagnostics for interaction: high spatial and temporal resolution, non-invasive,  polarimetry with optical probe: Faraday effect

The Faraday Effect Transverse probing of B-fields in underdense plasma with linearly-polarized probe pulse: if  B-field induced difference of h for circularly- polarized probe components  rotation of probe polarization:  measure frot to get signature of B-fields! J. A. Stamper et al. PRL (1975)

Experimental Setup JETI laser parameters: Elaser = 700 mJ, tlaser = 85 fs, f/6 OAP, Ilaser  3…4´1018 W/cm2 probe pulse: tprobe  100 fs, lprobe = 800 nm

Experimental Setup JETI laser parameters: Elaser = 700 mJ, tlaser = 85 fs, f/6 OAP, Ilaser  3…4´1018 W/cm2 probe pulse: tprobe  100 fs, lprobe = 800 nm

Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: polarogram 1 560 µm 340 µm ionization front polarogram 2 Deduce rotation angle frot from pixel-by-pixel division of polarogram intensities: 25

Results: Faraday-Rotation simulated feature experimental Faraday feature First experimental evidence for B-fields from MeV electrons and plasma bubble! M. C. Kaluza et al. PRL (2010) 26

Ultra-Short Probe Pulse JETI parameters: Elaser = 800 mJ, tlaser = 85 fs, f/6 OAP, Ilaser  3´1018 W/cm2 LWS-20 parameters: Elaser = 80 mJ, tlaser = 8.5 fs, f/6 OAP, Ilaser  6´1018 W/cm2 probe pulse: tprobe  100 fs @ 1 probe pulse: tprobe  8.5 fs @ 1 27

Ultra-Short Probe Pulse polarogram 1 polarogram 2 Electron bunch length: z = 4 µm   = 13 fs (FWHM)  deconvolved = (6.02.0) fs (FWHM) 28

Ultra-Short Probe Pulse Polarimetry: visualize e-bunch via associated B-fields change delay between pump and probe  movie of e-bunch formation observe electron acceleration on-line! 29

Ultra-Short Probe Pulse Polarimetry: visualize e-bunch via associated B-fields change delay between pump and probe  movie of e-bunch formation Shadowgraphy: visualize plasma wave change electron density  change plasma wavelength observe electron acceleration on-line! 30

Ultra-Short Probe Pulse Shadowgraphy: visualize plasma wave change electron density  change plasma wavelength Shadowgraphy: visualize plasma wave change electron density  change plasma wavelength A. Buck, M. Nicolai, M.C.Kaluza et al. Nature Physics (2011) 31

Ultra-Short Probe Pulse Shadowgraphy: visualize plasma wave change electron density  change plasma wavelength Shadowgraphy: visualize plasma wave change electron density  change plasma wavelength A. Buck, M. Nicolai, M.C.Kaluza et al. Nature Physics (2011) 32

Ultra-Short Probe Pulse Further development of probing: frequency-broadening of probe pulse (in gas-filled hollow fiber)  shorter probe sub-main pulse resolution resolve sub-structures in plasma wave (non-linear evolution?), e-bunch (longit. or transv. shape?) © J. Polz, FSU Jena 33

Outline Particle acceleration with lasers Motivation: machine size and specific applications in contrast to conventional particle accelerators. Laser-driven electron acceleration Laser-wakefield acceleration: towards ultra-short, quasi-monoenergetic GeV electron bunches, Visualization of accelerating plasma structure and acceleration fields. Summary

Summary Laser-driven electron acceleration Ultra-short bunch = (6.02.0) fs, quasi-monoenergetic (E/E ~ few %), high-energy (E ~ 1GeV) electron pulses now available in university-scale labs, suitable optical diagnostics allow insight and improvement of acceleration process. probing with sub-main-pulse duration becomes possible: visualize internal structure (density or energy distribution) of electron bunch Applications start to become realistic!

Thanks to all Collaborators A. Sävert, M. Nicolai, O. Jäckel, M. Schwab M. Reuter, H.-P. Schlenvoigt, J. Polz, T. Rinck, M. Hornung, S. Keppler, R. Bödefeld, M. Hellwing, A. Kessler, H. Liebetrau, J. Hein, F. Schorcht, P. Mämpel, H. Schwoerer, B. Beleites, F. Ronneberger, C. Spielmann, T. Stöhlker, G.G. Paulus Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena and Helmholtz-Institute Jena A. Buck, K. Schmid, C.M.S. Sears, J.M. Mikhailowa, F. Krausz, L. Veisz Max-Planck-Institute of Quantum Optics, Garching S.P.D. Mangles, A. E. Dangor, Z. Najmudin Imperial College London, UK A.G.R.Thomas, Z. He, K. Krushelnick Center for Ultrafast Optical Science, Michigan, US 36