Material science & Metallurgy L D College of Engineering Mechanical Engineering 1.

Slides:



Advertisements
Similar presentations
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Advertisements

Chapter 5 Defects in solids
Chapter 5: Imperfections in Solids
Single Crystal Slip Adapted from Fig. 7.9, Callister 7e.
Solid State Physics Yuanxu Wang School of Physics and Electronics Henan University 双语教学示范课程 1.
Plasticity, Ductility 4/15/2017 4/15/2017 1
1. Chapter 4: Imperfections in Solids 2 Introduction Metals Alloys Solid solutions New/second phase Solute (guest) Solvent (host)
CHAPTER 4: IMPERFECTIONS IN SOLIDS
IMPERFECTIONS IN SOLIDS Week Solidification - result of casting of molten material –2 steps Nuclei form Nuclei grow to form crystals – grain structure.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
MSE 528 Crystal structures and Defects Fall 2010.
Dislocations – Linear Defects –Two-dimensional or line defect –Line around which atoms are misaligned – related to slip Edge dislocation: –extra half-plane.
Crystalline Arrangement of atoms. Chapter 4 IMPERFECTIONS IN SOLIDS The atomic arrangements in a crystalline lattice is almost always not perfect. The.
PY3090 Preparation of Materials Lecture 3 Colm Stephens School of Physics.
Dislocations and Strengthening
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 5: Defects in Solids Perfect crystals don’t exist. Many of the important properties of materials are strongly influenced by defects, or even entirely.
Chapter 5 Imperfections in Solids
Chapter 5 - Imperfections in Solids
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Lecture 3.0 Structural Defects Mechanical Properties of Solids.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
Crystallographic Planes
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Introduction to Materials Science for Engineers, Seventh.
Types of Materials Metals : –Strong, ductile –high thermal & electrical conductivity –opaque Polymers/plastics : Covalent bonding  sharing of e’s –Soft,
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
PH 0101 UNIT 4 LECTURE 71 PH0101 UNIT 4 LECTURE-7 POINT IMPERFECTIONS LINE IMPERFECTIONS SURFACE IMPERFECTIONS VOLUME IMPERFECTIONS.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. POINT DEFECTS CHAPTER 4: IMPERFECTIONS.
IMPERFECTIONS IN SOLIDS
STRUCTURAL IMPERFECTIONS (DEFECTS) IN CRYSTALLINE SOLIDS
CHAPTER 3: INELASTIC DEFORMATION. 6 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic.
Chapter 12- ISSUES TO ADDRESS... Structures of ceramic materials: How do they differ from that of metals? 1 Point defects: How are they different from.
Deformation and Strengthening Mechanisms of Materials
The Muppet’s Guide to: The Structure and Dynamics of Solids 7. Defects and Solutions.
CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS
The Structure and Dynamics of Solids
Interactions of Quasiparticles
Objectives of Chapter 4 Introduce the three basic types of imperfections: point defects, line defects (or dislocations), and surface defects. Explore.
A (0001) plane for an HCP unit cell is show below.
Imperfections in Solids
Theoretical Strength Point Defects Linear Defects Planar Defects Volume Defects Microscopy Please read Chapter 4Please read Chapter 4 ME 330 Engineering.
Materials Science Chapter 4 Disorder in solid Phases.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 12-7 Frenkel Defect -- a cation is out of place. Shottky Defect -- a paired set of cation and anion vacancies. Equilibrium concentration of defects.
Materials Science Metals and alloys.
1 Length Scale of Imperfections Vacancies, impurities dislocations Grain and twin boundaries Voids Inclusions precipitates point, line, planar, and volumetric.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 5: Imperfections in Solids
Imperfections in the Atomic and Ionic Arrangements
Play movie  LINE DEFECTS Dislocations: • are line defects,
STRUCTURE OF CRYSTALLINE SOLIDS
Dislocations and Strengthening
CHAPTER 4: IMPERFECTIONS IN SOLIDS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Chapter 3:week 8 Solid State Chemistry Imperfections in Solid Materials Band theory, insulators, semi conductors p-type and n-type semiconductors and.
Imperfections in Solids
Lattice Defects.
Imperfections in Solid Materials
SOLID STATE CHMISTRY By: Dr. Aamarpali
Structural Defects Mechanical Properties of Solids
IMPERFECTIONS IN SOLIDS
Structural Defects Mechanical Properties of Solids
CHAPTER 4: IMPERFECTIONS IN SOLIDS
CRYSTAL IMPERFECTIONS
Imperfections in Solids
Presentation transcript:

Material science & Metallurgy L D College of Engineering Mechanical Engineering 1

Prepared by:- Aghera Raj M Khambhala Sahil R Khodifad Kaushal V Parmar Dipak

Imperfections in Solids

The properties of some materials are profoundly influenced by the presence of imperfections. It is important to have knowledge about the types of imperfections that exist and the roles they play in affecting the behavior of materials. 4

5 Atom Purity and Crystal Perfection If we assume a perfect crystal structure containing pure elements, then anything that deviated from this concept or intruded in this uniform homogeneity would be an imperfection. 1.There are no perfect crystals. 2.Many material properties are improved by the presence of imperfections and deliberately modified (alloying and doping).

6 Vacancy atoms Interstitial atoms Substitutional atoms Point defects 1-2 atoms Types of Imperfections Dislocations Line defects 1-dimensional Grain Boundaries Area defects 2-dimensional

7 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. Point Defects in Metals Vacancy distortion of planes self- interstitial distortion of planes

In metals, a self interstitial introduces relatively large distortions (strain) in the surrounding lattice since the atom is substantially larger than the interstitial site. Self Interstitials

9 Vacancies -- vacancies exist in ceramics for both cations and anions Interstitials -- interstitials exist for cations -- interstitials are not normally observed for anions because anions are large relative to the interstitial sites Adapted from Fig. 5.2, Callister & Rethwisch 3e. (Fig. 5.2 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.) Point Defects in Ceramics Cation Interstitial Cation Vacancy Anion Vacancy

10 Frenkel Defect To maintain the charge neutrality, a cation vacancy-cation interstitial pair occur together. The cation leaves its normal position and moves to the interstitial site. Schottky Defect To maintain the charge neutrality, remove 1 cation and 1 anion; this creates 2 vacancies. Adapted from Fig. 5.3, Callister & Rethwisch 3e. (Fig. 5.3 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.) Point Defects: Frenkel and Schottky Schottky Defect Frenkel Defect

11 We can get Q v from an experiment.  N v N = exp  Q v kT       Measuring Activation Energy Measure this... N v N T exponential dependence! defect concentration Replot it... 1/T N N v ln - Q v /k/k slope

12 Point Defects in Polymers Defects due in part to chain packing errors and impurities such as chain ends and side chains Adapted from Fig. 5.7, Callister & Rethwisch 3e.

13 What are the outcomes if impurity (B) is added to host (A)? Solid solution of B in A (random distribution of point defects) Solid solution of B in A plus particles of a new phase (usually for a larger amount of B) OR Substitutional solid solution. (e.g., Cu in Ni) Interstitial solid solution. (e.g., C in Fe) Second phase particle -- different composition -- often different structure. Imperfections in Metals

14 Since there are both anions and cations in ceramics, a substitutional impurity will replace the host ion most similar in terms of charge. Charge balance must be maintained when impurities are present. Ex: NaCl Imperfections in Ceramics Na + Cl - Substitutional cation impurity without impurityCa 2+ impurity with impurity Ca 2+ Na + + Ca 2+ cation vacancy Substitutional anion impurity without impurity O 2- impurity O 2- Cl - anion vacancy Cl - with impurity

Point Defects: Impurities

16 are line defects, slip between crystal planes result when dislocations move, produce permanent (plastic) deformation. Dislocations: Schematic of Zinc (HCP): before deformation after tensile elongation slip steps Line Defects

17 Imperfections in Solids Linear defects (Dislocations) are one-dimensional defects that cause misalignment of nearby atoms. Linear defects are associated primarily with mechanical deformation. Types of dislocations: edge, screw, mixed. Burger’s vector, b: measure of lattice distortion Edge dislocation:  extra half-plane of atoms inserted in a crystal structure; the edge of the plane terminates within the crystal.  Around the dislocation line there is some localized distortion.  b perpendicular (  ) to dislocation line

18 Dislocation motion requires the successive bumping of a half plane of atoms (from left to right). Bonds across the slipping planes are broken and remade in succession. The (plastic) permanent deformation of most crystalline materials is by dislocation movement. Most contain some dislocations that were introduced during solidification, plastic deformations, and rapid cooling (thermal stresses). To deform plastically means to slide atomic planes past each other. Atomic view of edge dislocation motion from left to right as a crystal is sheared. Motion of Edge Dislocation

The strength of a material with no dislocations is times greater than the strength of a material with a high dislocation density. So, materials with no dislocations may be very strong, but they cannot be deformed.

20 Imperfections in Solids Screw dislocation: –Named for the spiral stacking of crystal planes around the dislocation line; results from shear deformation –b parallel (  ) to dislocation line

Produces plastic deformation, Depends on incrementally breaking bonds. Plastically stretched zinc single crystal. If dislocations don't move, deformation doesn't happen! Dislocation Motion

22 Dislocations During Cold Working Ti alloy after cold working. Dislocations entangle with one another during cold work. Dislocation movement becomes more difficult. Dislocations are visible in electron micrographs

23 THANK YOU…