QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov.

Slides:



Advertisements
Similar presentations
Quantum optical effects with pulsed lasers
Advertisements

Entanglement-enhanced communication over a correlated-noise channel
Experimental work on entangled photon holes T.B. Pittman, S.M. Hendrickson, J. Liang, and J.D. Franson UMBC ICSSUR Olomouc, June 2009.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Dr. Daniel F.V. James MS B283, PO Box 1663, Los Alamos NM Invited Correlation-induced spectral (and other) changes Daniel F. V. James, Los Alamos.
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Generation of short pulses
Displaced-photon counting for coherent optical communication Shuro Izumi.
TWO-PHOTON ABSORPTION IN SEMICONDUCTORS Fabien BOITIER, Antoine GODARD, Emmanuel ROSENCHER Claude FABRE ONERA Palaiseau Laboratoire Kastler Brossel Paris.
Analyse de la cohérence en présence de lumière partiellement polarisée François Goudail Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau (France)
Quantum Entanglement and Bell’s Inequalities Kristin M. Beck and Jacob E. Mainzer Demonstrating quantum entanglement of photons via the violation of Bell’s.
Characterization and optimization of entangled states produced by a self-phase-locked OPO J. Laurat, G. Keller, J.A.O. Huguenin T. Coudreau, N. Treps,
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Analysis of quantum entanglement of spontaneous single photons
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
OPT OPT 253 Quantum Optics Laboratory, Final Presentation Wednesday, December 10 th 2008 By Carlin Gettliffe.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Shashi Prabhakar, S. Gangi Reddy, A. Aadhi, Ashok Kumar, Chithrabhanu P., G. K. Samanta and R. P. Singh Physical Research Laboratory, Ahmedabad
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Quantum Superposition, Quantum Entanglement and Quantum Technologies
Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
GAP Optique Geneva University 1 Quantum Communications at telecom wavelengths Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
1 Characterizing Photonic Spatial States Sebastião Pádua Physics Department - Federal University of Minas Gerais – Belo Horizonte - Brazil Paraty 2009,
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With.
Yaakov Shaked, Roey Pomeranz and Avi Pe’er Department of Physics and BINA Center for Nano-technology, Bar-Ilan University, Ramat-Gan 52900, Israel
Quantum Dense coding and Quantum Teleportation
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Characterisation of non-classical light sources for quantum information technologies Wojciech Wasilewski Michał Karpiński Piotr Wasylczyk Czesław Radzewicz.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Quantum Imaging with Undetected Photons
Quantum information with programmable optical devices: Quantum state reconstruction of qudits Carlos Saavedra Center for Optics and Photonics, Universidad.
Pulse Shaping with MIIPS SASS 8/22/2012 David Nicholson.
Under the Influence of Spectral Entanglement: Polarization-Entanglement Swapping and Fusion Gates Travis Humble * and Warren Grice, Oak Ridge National.
Measuring the Wave-Function of Broadband Bi-Photons
LPHYS’07 – Leon – August 22 nd 2007 Alessandro Zavatta, Valentina Parigi, Myungshik Kim, and Marco Bellini Istituto Nazionale di Ottica Applicata (INOA)
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Polarization descriptions of quantized fields Anita Sehat, Jonas Söderholm, Gunnar Björk Royal Institute of Technology Stockholm, Sweden Pedro Espinoza,
What has CP violation to do with nonlocality? by Beatrix C. Hiesmayr Faculty of Physics University of Vienna Austria Spooky action at distance also for.
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany.
Quantum Non-locality: From Bell to Information Causality Alex Thompson Physics 486 March 7, 2016.
Prebunching electron beam and its smearing due to ISR-induced energy diffusion Nikolai Yampolsky Los Alamos National Laboratory Fermilab; February 24,
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
Jiří Minář Centre for Quantum Technologies
ENTANGLED BRIGHT SQUEEZED VACUUM
Four wave mixing in submicron waveguides
Quantum Imaging: Q-OCT Department of Electrical & Computer Engineering
Spontaneous Parametric Down Conversion
M. Stobińska1, F. Töppel2, P. Sekatski3,
Quantum Information with Continuous Variables
Quantum State and Process Measurement and Characterization
Frequency Bin Quantum Photonics
Dispersive Comb-Spectrum Interferometer: Metrological Characterization
Presentation transcript:

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group Institute of Applied Physics, University of Bern, Switzerland Quantum 2014, Turin,

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Bänz Bessire2 13 Introduction The dit is a -dimensional extension of a classical 2-level system (bit) From a bit to a dit From a qubit to a qudit The qudit is a -dimensional extension of a quantum 2-level system (qubit) … … … … … …

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire3 13 Qudit states in quantum information Quantum key distribution L. Sheridan and V. Scarani, Phys. Rev. A 82, (2010) Increase secret bit key rate Increase robustness to noise dI d (maximally entangled state) I d (non-maximally entangled state) Lower detection efficiencies required for detection loophole free Bell tests T. Vértesi, S. Pironio, and N. Brunner, Phys. Rev. Lett. 104, (2010) Fundamental tests of quantum mechanics Higher robustness to noise in Bell measurements Larger violation of Bell inequalities D. Collins et al., Phys. Rev. Lett. 88, (2013) A. Acín, T. Durt, N. Gisin, and J. I. Latorre, Phys. Rev. A 65, (2002)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Polarization entanglement (qubits) P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337–4342 (1995) many more Transverse momentum entanglement (qudits) A. Mair et al., Nature 412, (2001) A. Dada et al., Nature Physics 7, (2011) M. Agnew et al., Phys. Rev. A 84, (2011) 1 Bänz Bessire4 13 Photonic entangled qudit states Energy-time (frequency) entanglement (continuous) Discrete time bins (qudits): R. Thew et al., Phys. Rev. Lett. 93, 1–4 (2004) D. Richart et al., Appl. Phys. B 106, 543–550 (2012) Spontaneous parametric down-conversion (SPDC) (idler) (signal) (pump)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Preparation (SPDC) Manipulation PPKTP Beam dump Detection (SFG) SPCM 5 W pump laser 1064 nm 700 s -1 up-converted photons 4-prism compressor: Compensates for dispersion Aligns the spectrum Spatial light modulator (SLM) SLM: Jenoptik S640d 532 nm PPKTP Bandpass filter Complex transfer function: 1 Bänz Bessire5 13 Experiment Setup Shaping of the two-photon wavefunction by spectral amplitude and phase modulation with Detected signal after manipulation (SLM) and SFG: A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, (2005) F. Zäh, M. Halder, and T. Feurer, Optics Express 16, (2008)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire6 13 Frequency-bin entangled qudits Frequency bins Discretize the SPDC spectrum to obtain entangled qudits Imply a frequency-bin structure with the SLM Independent control Subdivide the spectrum into frequency bins according to

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire7 13 Quantum state tomography C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, Phys. Rev. A 88, (2013) Reconstruction of the density matrices for maximally entangled qudits by Maximum Likelihood Estimation Frequency-bin entangled qudits Detected signal is equivalent to the signal of a projective measurement with SLM

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN By means of projective measurements we determine 1 Bänz Bessire8 13 Frequency-bin entangled qudits 2-qubit / 2-qutrit state with a variable degree of entanglement Collins et al. (CGLMP) introduced a -dimensional Bell parameter Correlations between two separated systems are explainable by a local realistic theory if (CGLMP inequality) Bell measurements D. Collins et al., Phys. Rev. Lett. 88, (2002) is varied by amplitude modulation with the SLM

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire9 13 Frequency-bin entangled qudits Bell measurements 2-qubit state with a : 2-qutrit state with a : C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, Phys. Rev. A 88, (2013) Theory scaled by mixing parameters acc. to A non-maximally entangled qutrit state ( ) violates the CGLMP inequality stronger than a maximally entangled qutrit A. Acín, T. Durt, N. Gisin, and J. I. Latorre, Phys. Rev. A 65, (2002)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire10 13 Time-bin entangled qudits Time bins with a SLM Analogue to frequency bins we subdivide the time domain into bins Using two time bins corresponds to the Franson concept of 2-photon interferometry SPDC J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989) FT

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire11 13 Time-bin entangled qudits Demonstrate entangled qubits by 2-photon interference Projection of a 2-qubit state onto Finite spectral resolution at SLM plane reduces the visibility Coherence times: SLM B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire12 13 Outlook Implementation of other discretization schemes Discretization of the frequency space into Schmidt modes Non-locality measures Use Bell measurement data (qutrit) to calculate the non-local capacity and the distance to the non-local polytope as non-locality measures C. Bernhard, B. Bessire, A. Montina, M. Pfaffhauser, A. Stefanov, and S. Wolf, arXiv: (2014) Improvements of the experimental setup Enhance the detection efficiency by new detection schemes Improved optical resolution Allows for higher dimensions Demonstrate a Kochen-Specker (quantum game) experiment using entangled qutrits (or ququarts) Future projects Two-photon absorption with entangled photons (coherent control) B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire13 Acknowledgments Thank you for your attention! C. Bernhard S. Lerch S. Schwarz M. Unternährer A. Stefanov T. P. Wihler S. Wolf and his group Collaborators: J. Kohn

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire BACKUP SLIDES

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Entanglement quantification

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Entanglement quantification Entropy of entanglement Reduced density matrix Consider the state of the i(s) subsystem Entropy of entanglement: Corresponds to entanglement in a maximally entangled qudit with T. Wihler, B. Bessire, and A. Stefanov, arXiv: (2012) CW pump field large discretization scheme is required: Compute without diagonlization of : Given a set of experimental parameters: How strong is the entanglement between the two photons?

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Entanglement quantification Entropy

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Entanglement quantification Schmidt number

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire SLM UC Single photon limit

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Experiment Point spread function (PSF) Diffraction effects due to the finite aperture of lenses and other optical elements lead to a point-to-spot image Single spectral components are spatially broadened at the plane of the SLM

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Experiment SLM Spectral phase shift in each display: display 2 display 1 Two liquid crystal displays Polarization dependent detection (SFG) + Independent spectral amplitude and phase manipulation =

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire = UC-crystal SLM working principle

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Theory of SFG coincidence detection First order perturbation theory allowed due to low SFG efficiency: Propagated signal-idler field operators: {,, SLM, O, …} K. A. O’Donnell and A. B. U’Ren Phys. Rev. Lett. 103, (2009) Coincidence state : NL crystal SPC SFG

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Theory of SFG coincidence detection Properties of the SFG crystal are included Transferfunction of an arbitrary optical setup is included

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Theory of SFG coincidence detection Are the properties of the SFG crystal correctly incorporated in ?

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Equivalence Modified joint spectral amplitude

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Single photon limit Corresponds to a mean spectral photon density of Maximal flux in which photon pairs are well distinguishable from each other Maximal flux Experimental power Below single photon limit B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, (2005)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Additional Bell measurement informations

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Frequency-bin entangled qudits Bell measurement The Bell parameter for and reads CGLMP inequality violated by entangled states Single contributions to by projections 2-qubit/2-qutrit state with a variable degree of entanglement

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Frequency-bin entangled qudits I 2 and I 3 theory Curves are scaled to experimental data with corresponding mixing parameter Symmetric noise model with mixing parameter :

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Frequency-bin entangled qudits Non-locality quantification of experimental qutrit pairs Three measures of non-locality Bell parameter Distance to the local polytope Asymmetric non-local capacity

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Schmidt mode qudits Frequency bin qudits two-photon interference

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Schmidt decomposition 1 Bänz Bessire Schmidt-mode entangled qudits represents a pure two-photon state Schmidt decomposition Efficient approach to discretize into an entangled qudit state Basis for qudits are orthonormal

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Schmidt-mode entangled qudits SLM transfer function for the entangled qubit SLM transfer function for the entangled qutrit B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Schmidt-mode entangled qudits Entanglement CGLMP inequality violation Coincidence signal for data fitting B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Schmidt-mode entangled qudits

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Frequency-bin entangled qudits CGLMP inequality violation Entanglement for all B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Time-bin qudits

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Transition from a separable to a maximally entangled qubit 1 Bänz Bessire Time-bin entangled qubits Generalized qubit state Transition modelled by coincidence rate are used as fitting parameters For it holds that

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Fitting parameters 1 Bänz Bessire Time-bin entangled qubits Generalized qubit state B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Time-bin entangled qubits Bell parameter I 2 B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New. J. Phys., (2014)

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Time-bin entangled qubits Single photon intensity versus coincidence signal Measure single photon intensity with a powermeter and a linear polarizer The single photon intensity is given by Separable qubitMaximally entangled qubit

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Time-bin entangled qubits Single photon intensity versus coincidence signal

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Coherent control

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Coherent control Interferometric autocorrelation measurement Entangled two-photon state enters a Mach-Zehnder interferometer with a subsequent SFG process The coincidence signal is a coherent superposition of SLM transfer function

QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN 1 Bänz Bessire Coherent control Interferometric autocorrelation measurement F. Zäh, M. Halder, and T. Feurer, Optics Express 16, (2008)