Qimiao Si Rice University

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum Griffiths Phases of Correlated Electrons Collaborators: Eric Adrade (Campinas) Matthew Case (FSU) Eduardo Miranda (Campinas) REVIEW: Reports on.
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Competing Orders: speculations and interpretations Leon Balents, UCSB Physics Three questions: - Are COs unavoidable in these materials? - Are COs responsible.
Quantum Criticality and Fractionalized Phases. Discussion Leader :G. Kotliar Grodon Research Conference on Correlated Electrons 2004.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Conserving Schwinger boson approach for the fully- screened infinite U Anderson Model Eran Lebanon Rutgers University with Piers Coleman, Jerome Rech,
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany Experimental Tutorial on Quantum Criticality in strongly correlated.
Lecture schedule October 3 – 7, 2011  #1 Kondo effect  #2 Spin glasses  #3 Giant magnetoresistance  #4 Magnetoelectrics and multiferroics  #5 High.
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Fermionic quantum criticality and the fractal nodal surface Jan Zaanen & Frank Krüger.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Heavy Fermion Superconductivity: Competition and Cooperation of Spin Fluctuations and Valence Fluctuations K. Miyake KISOKO, Osaka University KISOKO =
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
History of superconductivity
Self-generated instability of a ferromagnetic quantum-critical point
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Magnetotransport in CeMIn 5 Scanning Tunneling Microscopy on heavy fermion.
Zheng-Yu Weng IAS, Tsinghua University
Electronic Griffiths phases and dissipative spin liquids
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Qimiao Si Rice University KIAS, Oct 29, 2005 Heavy fermion metals: Global phase diagram, local quantum criticality, and experiments.
Emergent Nematic State in Iron-based Superconductors
Quantum Criticality in Magnetic Single-Electron Transistors T p Physics of non-Fermi-liquid Metals Qimiao Si, Rice University, DMR Quantum criticality.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first order quantum phase transition Cristian D. Batista and Stuart.
Lecture schedule October 3 – 7, 2011
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
ARPES studies of unconventional
Breakdown of the Kondo effect at an antiferromagnetic instability Outline HF quantum critical points (QCPs) Kondo breakdown QCP in YbRh 2 Si 2 Superconductivity.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computer Science.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Quantum phases and critical points of correlated metals
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
How might a Fermi surface die?
Killing the Fermi surface: Some ideas on the strange metal, Fermi arcs and other phenomena T. Senthil (MIT) TS, ``Critical fermi surfaces and non-fermi.
Qimiao Si Rice University
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Qimiao Si Rice University Local Quantum Criticality and Emergent Phases Qimiao Si Rice University Workshop on Heavy Fermion Physics: Perspective and Outlook, Institute of Physics, CAS, Jan 8, 2012

Jed Pixley, Jianda Wu, Rong Yu (Rice University) Pallab Goswami, Seiji Yamamoto (NHMFL, FSU) Stefan Kirchner (MPI-PKS,CPfS) Lijun Zhu (UC Riverside) Jian-Xin Zhu (Los Alamos) Kevin Ingersent (U. of Florida) Jianhui Dai (Zhejiang U.) S. Friedemann C. Krellner Y. Tokiwa P. Gegenwart S. Paschen S. Wirth N. Oeschler T. Westerkamp R. Küchler T. Lühmann T. Cichorek K. Neumaier O. Tegus O. Trovarelli C. Geibel F. Steglich P. Coleman E. Abrahams

Superconductivity at the Border of Magnetism Heavy fermions Iron pnictides Kasahara et al O. Stockert et al Cuprates Organics Faltermeier et al Linear resistivity Broun TN

Heavy fermion metals as prototype quantum critical points CePd2Si2 CeCu6-xAux H. v. Löhneysen et al N. Mathur et al Linear resistivity TN YbRh2Si2 J. Custers et al

“Beyond-Landau” Quantum Criticality Inherent quantum modes, beyond order-parameter fluctuations: -- need to identify the additional critical modes.

Local Kondo-destruction QCP Global phase diagram Some issues and questions: Diversity and universality of QCPs Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

Kondo lattices: heavy Fermi liquid: Kondo singlet Kondo resonance No symmetry breaking, but macroscopic order

Critical Kondo Destruction Critical Kondo destruction (f-elec. localization) at the T=0 onset of antiferromagnetism QS, S. Rabello, K. Ingersent & J. L. Smith, Nature 413, 804 (’01); PRB (’03) P. Coleman et al, JPCM 13, R723 (’01)

Critical Kondo Destruction From the paramagnetic heavy Fermi liquid side: Kondo effect: Extended-DMFT: collapsing Eloc* from paramagnetic side

Fermi Surface Reconstruction and Energy Scales Kondo-destruction energy scale Sudden reconstruction of Fermi surface /T scaling in χ(q,ω,T) and G(k,ω,T)

Dynamical Scaling of Local Quantum Critical Point J-X Zhu, D. Grempel and QS, PRL (2003) a = 0.83 J-X Zhu, S. Kirchner, R. Bulla, and QS, PRL (2007) a = 0.78 M. Glossop & K. Ingersent, PRL (2007) EDMFT: collapsing Eloc* from paramagnetic side

Dynamical Scaling of Local Quantum Critical Point J-X Zhu, D. Grempel and QS, PRL (2003) a = 0.83 J-X Zhu, S. Kirchner, R. Bulla, and QS, PRL (2007) a = 0.78 M. Glossop & K. Ingersent, PRL (2007) EDMFT: collapsing Eloc* from paramagnetic side Cf. neutron scattering expts: A. Schröder et al., Nature(’00); O. Stockert et al, PRL (’98); M. Aronson et al, PRL (’95)

Kondo-destroying AF QCP in CeRhIn5 H. Shishido, R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 (’05) _

Fermi Surface and Energy Scales in YbRh2Si2 T * S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel, F. Steglich, S. Paschen, S. Kirchner, and QS, PNAS 107, 14547 (2010) S. Paschen et al, Nature (2004); P. Gegenwart et al, Science (2007)

Other Approaches to Kondo Destruction T. Senthil, M. Vojta, and S. Sachdev, PRB 69, 035111 (2004) I. Paul, C. Pépin and M. R. Norman, PRL 98, 026402 (2007) L. De Leo, M. Civelli and G. Kotliar, PRB 77, 075107 (2008) P. Wölfle and E. Abrahams, PRB 84, 041101 (2011) …

Local Kondo-destruction QCP Global phase diagram Some issues and questions: Diversity and universality of QCPs Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

JK<< Irkky << W Kondo lattice JK<< Irkky << W JK=0 as the reference point of expansion: f- local moments: AF, QNLσM conduction electrons: Fermi volume “x” S. Yamamoto & QS, PRL 99, 016401 (2007)

Quantum non-linear Sigma Model Representation Heisenberg model + coherent spin path integral QNLM

JK<< Irkky << W Kondo lattice JK<< Irkky << W JK=0 as the reference point of expansion: f- local moments: AF, QNLσM conduction electrons: Fermi volume “x” JK EXACTLY MARGINAL; AFs “small” Fermi surface stable S. Yamamoto & QS, PRL 99, 016401 (2007)

G: frustration, reduced dimensionaltiy, … Global Phase Diagram G G: frustration, reduced dimensionaltiy, … I PL II AFS AFL JK QS, Physica B 378, 23 (2006) S. Yamamoto & QS, PRL 2007 SDW of PL

Global Phase Diagram Q. Si, Phys. Status Solidi B247, 476 (2010) P. Coleman & A. Nevidomskyy, JLTP 161, 182 (2010)

Global Phase Diagram Pure and doped YbRh2Si2 S. Friedemann et al, Nat. Phys. 5, 465 (’09)

SOME ISSUES AND QUESTIONS Materials basis: diversity and universality Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

Global Phase Diagram Diversity and universality of QCPs: materials basis – YbRh2Si2 CeCu6-xAux CeRhIn5 CeIn3 β-YbAlB4 Ce3Pd20Si6 Yb2Pt2Pb YbAgGe …

Global Phase Diagram Effect of dimensionality – the case of Ce3Pd20Si6 J. Custers, K.-A. Lorenzer, M. Müller, A. Prokofiev, A. Sidorenko, H. Winkler, A.M. Strydom, Y. Shimura, T. Sakakibara, R. Yu, QS, and S.Paschen, Nature Materials (Jan. 8, 2012)

SOME ISSUES AND QUESTIONS Materials basis: diversity and universality Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

Global Phase Diagram Motivates new theoretical questions and approaches:

Global Phase Diagram Motivates new theoretical questions and approaches: Eg, Kondo effect from QNLσM + Berry Phase P. Goswami & QS, PRL 107, 126404 (’11) More generally, how to capture Kondo effect using bosonic representations of spin

Role of Berry Phase term in QNLσM Approach Heisenberg model + coherent spin path integral QNLM

Kondo effect and Berry phase in 1D JK<< Irkky, W QNLσM -- chiral rotation: P. Goswami + QS, PRL 107, 126404 (’11)

Kondo effect and Berry phase in 1D JK<< Irkky, W QNLσM -- chiral rotation: (Tanaka & Machida) Kondo vs spin-Peierls: large vs small FS in paramagnets P. Goswami + QS, PRL 107, 126404 (’11)

SOME ISSUES AND QUESTIONS Materials basis: diversity and universality Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

Kondo destruction (kicking one electron/site out of the Fermi surface) What happens beyond the Kondo limit, w/ mixed-valency?

Kondo destruction (kicking one electron/site out of the Fermi surface) What happens beyond the Kondo limit, w/ mixed-valency? β-YbAlB4 -- H/T scaling  interacting Y. Matsumoto et al, Science 331, 316 (2011) -- Mixed valency M. Okawa et al, PRL 104, 247201 (2010)

Kondo destruction and valence fluctuations in pseudogapped asymmetric anderson model spin susceptibility charge susceptibility Charge excitations part of the quantum-critical spectrum J. Pixley, S. Kirchner, K. Ingersent and QS, arXiv:1108.5227

Kondo destruction and valence fluctuations in pseudogapped asymmetric anderson model Field/temperature scaling Temperature dependence of valence J. Pixley, S. Kirchner, K. Ingersent and QS, arXiv:1108.5227

SOME ISSUES AND QUESTIONS Materials basis: diversity and universality Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

Superconductivity near Kondo-destroying AF QCP in CeRhIn5 T. Park et al., Nature 440, 65 (’06); G. Knebel et al., PRB74, 020501 (’06) H. Shishido, R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 (’05) _

Superconductivity near Kondo-destroying AF QCP in CeRhIn5 T. Park et al., Nature 440, 65 (’06); G. Knebel et al., PRB74, 020501 (’06)

Superconductivity in CeCu2Si2 Exchange energy saving ≈ 20 times of SC condensation energy  large kinetic energy loss O.Stockert, J.Arndt, E.Faulhaber, C.Geibel, H.S. Jeevan, S.Kirchner, M.Loewenhaupt, K.Schmalzl, W.Schmidt, QS, & F.Steglich, Nat. Phys. 7, 119 (2011)

Superconductivity in CeCu2Si2 Exchange energy saving ≈ 20 times of SC condensation energy  large kinetic energy loss due to transfer of spectral weight to higher energies O.Stockert, J.Arndt, E.Faulhaber, C.Geibel, H.S. Jeevan, S.Kirchner, M.Loewenhaupt, K.Schmalzl, W.Schmidt, QS, & F.Steglich, Nat. Phys. 7, 119 (2011)

SUMMARY AF QCPs in heavy fermion metals Emergent phases: SDW type: Order-parameter fluctuations Local quantum criticality: Electronic localization in the form of Kondo destruction Emergent phases: Global phase diagram Discussions and outlook: Diversity and universality of QCPs Berry phase and Kondo effects Kondo destruction and valence fluctuations Implications for superconductivity

RG for mixed Bosons and Fermions with a Fermi Surface All directions scales Only 1 direction scales (Shankar) We need to consider both a bosonic vector field and fermionic fields, which requires that we combine the two methods. This is something we can do, and we are somewhat lucky in our case, basically because zf=zb=1. The first step in RG is the tree level analysis, which is basically power counting. To do this we need the scaling dimension of the fields. We find [\psi]=-3/2 from the free electron part of the action, and the dimension of the boson field from the non-linear sigma model. When we plug it all end we find that lo-and-behold, the coupling is marginal! The next question is whether this is marginally relevant, or marginally irrelevant. This requires that we go to 1-loop. S. Yamamoto & QS, PRB 81, 205106 (2010)