Zeudi Mazzotta* On behalf of the AEgIS collaboration from Università degli studi di Milano Istituto Nazionale di Fisica Nucleare.

Slides:



Advertisements
Similar presentations
STREGA C2:Cryogenic suspension system for advanced resonant detectors (5 MIN) Task -C2: development and construction of advanced cryogenic system for resonant.
Advertisements

STREGA M2:Advanced materials and techniques for resonant detectors (5 MIN) Participants: INFN * -Istituto Nazionale di Fisica Nucleare IFN-Istituto di.
AEGIS Antimatter Experiment: Gravity, Interferometry, Spectroscopy C. Canali INFN sez. Genova 11° ICATPP Como, 8 October 2009.
Antimatter (e+, Ps, H-bar) physics Laboratory
Joe Vinen Workshop on New Experimental Techniques for the Study of Quantum Turbulence, ICTP, Trieste, June 2005 Metastable He molecules and laser-induced.
Antimatter: Past, Present & Future Presentation By Paramita Barai In Course Phys 6410: Introductory Nuclear and Particle Physics Instructor: Dr. Xiaochun.
The charmonium mass spectrum
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
Antihydrogen Spectroscopy David Christian Fermilab November 17, 2007.
Antimatter Matter-Antimatter Propulsion Theory. What Antimatter is Antimatter was predicted in 1929 (4) Antihydrogen produced in 1999 Antimatter is composed.
September 23, 2008 Erice Cem Güçlü İstanbul Technical University Physics Department Production of electron-positron pairs by nuclear dissociation.
INRNE BAS NEC'2007, Varna, Bulgaria Positron annihilation versus electron cloud Angel H. Angelov Institute for Nuclear Research and Nuclear Energy.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
New LEIF I3 Transnational access to ELISA
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
L. Liszkay IRFU CEA Saclay, France GBAR collaboration
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
1 Antimatter 1Antimatter and the Universe 2Antimatter in the Laboratory 3Antimatter in Daily Life.
FLAR project S.L. Yakovenko JINR, Dubna,Russia. 2 Contents 1.FlAIR project 2.AD facility at CERN 3.Antyhydrogen and Positronium in-flight at FLAIR 4.LEPTA.
1 Antimatter - Rolf Landua Lecture Plan I.History of Antimatter II.Antimatter and the Universe III.Production and trapping of antiparticles IV.Precision.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
Considerations on Rydberg transport for antihydrogen formation Daniel Comparat Laboratoire Aimé Cotton Orsay FRANCE.
Measuring the Gravitational Acceleration of Antimatter: The AEgIS Experiment Torkjell Huse (for Nicola Pasifico) – University of Oslo On behalf of the.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
1/13/ Mar La Sapienza Marco Giammarchi Istituto Nazionale Fisica Nucleare - Milano Study of fundamental Laws with Antimatter at CERN Introduction.
Antihydrogen Trapping and Resonant Interactions, חגיגת הפיזיקה שדה בוקר אלי שריד Eli Sarid ALPHA Collaboration, CERN + NRCN, Israel Antihydrogen.
Mathematical Descriptions of Axially Varying Penning Traps Stephanie Brown.
CERN: The ATRAP Experiment. Preview Overview of the ATRAP Experiment  History  Ongoing work  Goals Presentation of my jobs and projects.
Varenna - July 2009 Laser-driven Ps excitation in the Aegis antimatter experiment Marco G. Giammarchi and Fabrizio Castelli Dipartimento di Fisica dell’Universita’
January 6, 2011ICLATIP-3 Kathmandu University Nepal 1 Proposal for the realization of Santilli's comparative test on the gravity of electrons and positrons.
The rod is continuously translated and rotated by a stepper motor Nd:YAG laser pulse vaporises the target rod Valve emits a helium pulse Fullerenes react.
The rod is continuously translated and rotated by a stepper motor Nd:YAG laser (532 nm, 3-5 ns, 5mj/pulse) vaporises the target rod by a single pulse/shot.
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Merritt Moore Physics 95, 2009 T R A P P E D ANTIPARTICLES.
New physics with intense positron beams Alfredo Dupasquier Frascati, 20 gennaio 2010.
Gemma Testera Consiglio di Sezione Luglio 2015 Stefan Meyer Institute CERN Czech Technical University ETH Zurich University of Genova University of Milano.
MASPLAS (MAterial and fundamental Science with Positrons and LASers)  Marco G. Giammarchi - Infn Milano  Rafael Ferragut - Politecnico di Milano (e Infn)
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
Internal Target: Progress Report F. F. R. S. L. (* DISAT) Contents: Second target: production.
Overview of low energy positron physics and applications
NUCLEAR FRAGMENTATION STUDIES WITH ANTIPROTON-NUCLEUS ANNIHILATIONS J. Kawada on behalf of the AE g IS collaboration. Albert Einstein Center for Fundamental.
Ялта Конференция Yalta-, Univ. of Tokyo, Ryo FUNAKOSHI Univ. of Tokyo Ryo FUNAKOSHI ATHENA collaboration ATHENA: a High Performance detector for.
Apparatus to Explore the Gravitational Interactions of antiatomS: the R&D programme CERN G. Bonomi (now at Brescia University), M. Doser, R. Landua, A.
7/3/2016Milano Consiglio di Sezione AEGIS: a moirè deflectometer for antimatter Marco G. Giammarchi Istituto Nazionale Fisica Nucleare - Milano A E g I.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
7/5/2016Milano Consiglio di Sezione AEGIS at CERN: measuring Antihydrogen fall Marco G. Giammarchi Istituto Nazionale Fisica Nucleare - Milano A E g I.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Testing antimatter gravity: the Aegis experiment at Cern Phd Student: Michele Sacerdoti Phd Workshop: 12-13/10/2015 Supervisors: Fabrizio Castelli, Marco.
QUPLAS Marco G. Giammarchi Istituto Nazionale Fisica Nucleare – Milano
MCP Analysis on ALpha Howard Chiao.
The AE g IS experiment at AD
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Cold Antimatter at CERN
PHySES Positronium Hyperfine Structure of the first Excited State:
Overview Lecture 2 Trapping antiprotons Antihydrogen ATHENA and ATRAP
Cold Antimatter at CERN
Increasing Efficiency in the GRACE Line at CERN’s Antimatter Factory using Ardunio Interface Robby Finan.
Siara Fabbri University of Manchester
Mike Charlton Physics, Swansea
Marco G. Giammarchi* Istituto Nazionale Fisica Nucleare - Milano
Matteo Negrini Università degli Studi di Ferrara - INFN
Properties of antimatter studied at the CERN Antiproton Decelerator
Angela Gligorova on behalf of the AEgIS and Medipix collaborations
State evolution in cold helium Rydberg gas
BEAMLINE MAGNETS FOR ALPHA-G
Progress on Antimatter Interferometry
Summer Student Sessions
LEPTA project Measuring lifetime of positrons
Presentation transcript:

Zeudi Mazzotta* On behalf of the AEgIS collaboration from Università degli studi di Milano Istituto Nazionale di Fisica Nucleare

OUTLINE 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 2  The AEgIS experiment  The role of Positronium in the AEgIS experiment  Current status: latest results

The physics of the AEgIS experiment

101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 4 All matter bodies at the same space-time point in a given matter gravitational field will undergo the same acceleration The weak equivalence principle (WEP) All antimatter bodies at the same space-time point in a given antimatter gravitational field will undergo the same acceleration CPT symmetric situation

All antimatter bodies at the same space-time point in a given antimatter gravitational field will undergo the same acceleration 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 5 All matter bodies at the same space-time point in a given matter gravitational field will undergo the same acceleration The weak equivalence principle (WEP) Will antimatter bodies at the same space-time point in a given matter gravitational field undergo the same acceleration?

CERN Czech Technical University ETH Zurich University of Genova University of Padova University of Pavia University College London Politecnico di Milano Max-Planck Institute Heidelbert Institute of Nuclear Research of the Russian Academy of Science University of Bergen University of Brescia Heidelberg University University of Trento University of Paris Sud University of Oslo INFN sections of: Genova, Milano, Padova, Pavia, Trento AEgIS collaboration Stefan Meyer Institute University of Bern University of Lyon 1 6 University of Milano 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta

The main goal of AEgIS 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 7 Neutral antimatter: Antihydrogen ?

Antihydrogen production 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 8 AEgIS strategy PROMISING TECHNIQUE Control of the antihydrogen quantum state Cold antihydrogen atoms (v antihydrogen ~ v antiproton ) Advantages in the cross section (see later) Charge exchange with Positronium Other strategies The second seems to be the dominant process (highly exicited antihydrogen) Antihydrogen atoms warmer than trapped antiprotons (Hbar production when v antiproton ~ v positron ) Cross section Antiprotons and positrons Recombinations and

101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 9 Positronium atom orto-Ps Triplet state Mean lifetime 142ns 3  annihilation      para-Ps Singlet state Mean lifetime 0,125ns 2  annihilation  Energies = 511keV  Energies < 511keV Ps n-level energy Purely leptonic atom

AEgIS in short 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 10 e+ beam Antiprotons from CERN AD (Antiproton Decelerator) p-p- p-p- e+

AEgIS in short 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 11 e+ pulse dumping and acceleration 4,5 Tesla magnet antiprotons cooling and trapping p-p- e+ e+ accumulator

AEgIS in short 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 12 1 Tesla magnet e+ pulse implantation and Positronium formation Trapped&cooled antiprotons

AEgIS in short 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 13 PRODUCTION TRAP Ps and p- overlap region: Charge exchange reaction takes place! 1 Tesla magnet

AEgIS in short 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 14 1 Tesla magnet Antihydrogen accelerated beam

AEgIS in short 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 15 Moirè deflectometer 1% precision 1m of Moirè deflectometer Tens of microns of deflection Use of emulsions

Role of Positronium in AEgIS

Positron pulse: 4,2kV 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 17 The Positronium production A bunched positron beam is sent toward a porous «target» able to convert positrons into Positronium. Porous Silicon target cooled Positronium cloud Positronium is created in the material bulk A fraction of the Ps exiting the target is thermalized into the target pores Pores diameter ~ 10nm e+/Ps converter Nanochanneled Si Frontal view 4.2 kV e K

101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 18 The role of Positronium in AEgIS Ps is needed to generate Antihydrogen in the Charge exchange reaction The cross section of this reaction increases with the Ps principal quantum number: Required Ps excitation to Rydberg levels (n=15…24) !!!

Positronium laser excitation and detection

AEgIS Ps Rydberg laser excitation strategy 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 20 n=1 n=3 Continuum High n 6,05eV 205nm 0,75eV ~1680nm PHYSICAL REVIEW A 78, : Efficient positronium laser excitation for antihydrogen production in a magnetic field, F. Castelli, I. Boscolo, S. Cialdi, and M. G. Giammarchi, D. Comparat NIMB 269 (2011) 1527–1533 : Efficient two-step Positronium laser excitation to Rydberg levels, S. Cialdi, I. Boscolo, F. Castelli, F. Villa; G. Ferrari, M.G. Giammarchi Final Rydberg excitation efficiency for a TWO STEP STRATEGY (simple 3-level model of Ps in field free environment) 1->3->n = 30%

Current status for Positronium and antiprotons Achievements towards the gravity measurement Catching and cooling of large number of antiprotons Transfer of the antiproton plasma in the production trap Production, transfer and storage of a high number of positrons Studies of Ps formation and laser excitation to Rydberg levels 1 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 21

Antiprotons Catching and cooling of large number of antiprotons Transfer of the antiproton plasma in the production trap 90% cooling efficiency temperature of 10-20K 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 22

Positrons Catching and cooling of large number of positrons PRELIMINARY 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 23

Positronium n=3 excitation evidenceRydberg n= excitation evidence 15% photoionization efficiency Theoretical value 0 = 205,0474 (Ruggero Caravita, Fabrizio Castelli, Fabio Villa) 101° Congresso Nazionale di Fisica Roma 2015 Zeudi Mazzotta 24

Conclusions & next goals Main magnet (1T) Off-axis recapture of positrons: for Ps production inside the 1T magnet Ps excitation in the 1T magnet Antihydrogen production in the production trap External Ps Experimental Chamber Deeper study on Rydberg excitation efficiencies Resonance studies for chosing the best Ps converter for the 1T magnet CURRENT STATUS Positrons 90% cooling efficiency temperature of 10-20K Positronium n=3 excitation evidence (via photoionization) n= excitation evidence NEXT STEPS Antiprotons 25

1.The lasers How we produce the two wavelength for n=3 and Rydberg excitation

EKSPLA Nd:YAG + 2nd + 4th harmonics UV λ

EKSPLA Nd:YAG + 2nd + 4th harmonics IR UV λ λ