Diffraction scintillation at 1.4 and 4.85GHz V.M.Malofeev, O.I.Malov, S.A.Tyul’bashev PRAO, Russia W.Sieber Hochschule Nederrhein, Germany A.Jessner, R.Wielebinski.

Slides:



Advertisements
Similar presentations
Pulsar radio wave dispersion, intermittency, and kinetic Alfvén wave turbulence Paul Terry Stas Boldyrev.
Advertisements

Primary results of polarization survey of large-SNRs at 6cm Li Xiao, XiaoHui Sun, Chen Wang, WeiBin Shi, Wolfgang Reich, JinLin Han Partner Group of MPIfR.
Probing cosmic plasma with Giant Radio Pulses June 22, 2006 “Scattering and Scintillation in Radio Astronomy’’ Vladislav Kondratiev, Michael Popov, Vladimir.
Preliminary results of giant pulse investigations from Crab pulsar with Radioastron. Rudnitskiy A.G., Popov M.V., Soglasnov V.A. 12 th EVN SYMPOSIUM Cagliari,
The Highest Time-Resolution Measurements in Radio Astronomy: The Crab Pulsar Giant Pulses Tim Hankins New Mexico Tech and NRAO, Socorro, NM Extreme Astrophysics.
Emmision of the remarkable pulsar B : Continual changes in the subpulse drift rate and in integrated pulse shape, intensity and polarization at frequencies.
Which describes a variation of wave frequency ω(t) in a geometric-optic approximation [4]. Here n(ω) is the refractive index of the medium, is the vector.
ITER reflectometry diagnostics operation limitations caused by strong back and small angle scattering E.Gusakov 1, S. Heuraux 2, A. Popov 1 1 Ioffe Institute,
Solar wind in the outer heliosphere: IPS observations at the decameter wavelengths. N.N. Kalinichenko, I.S. Falkovich, A.A. Konovalenko, M.R. Olyak, I.N.
VSOP-2 Observations of Pulsars Carl Gwinn * With D.L. Jauncey 2, S. Dougherty 3, H. Hirabayashi 4, J.E. Reynolds 2, A. K. Tzioumis 2, E.A. King 2, B. Carlson.
Contour statistics, depolarization canals and interstellar turbulence Anvar Shukurov School of Mathematics and Statistics, Newcastle, U.K.
Pulsar broadening measurements at low frequencies with LOFAR Kimon Zagkouris University of Oxford In collaboration with the LOFAR Pulsar Working Group.
Detection of Giant pulses from pulsar PSR B Smirnova T.V. Pushchino Radio Astronomy Observatory of ASC FIAN Pushchino Radio Astronomy.
Random Media in Radio Astronomy Atmospherepath length ~ 6 Km Ionospherepath length ~100 Km Interstellar Plasma path length ~ pc (3 x Km)
Mean pulse profiles and spectra at the low frequencies Malov O.I., Malofeev V.M. Malov O.I., Malofeev V.M. Pushchino Radio Astronomy Observatory.
Variability of the Flux Densities of Radio Sources on Timescales Shorter than a Month A.G. Gorshkov 1, V.K.Konnikova 1 M. Mingaliev Sternberg Astronomical.
Remote Sensing of Solar Wind Velocity Applying IPS Technique using MEXART Remote Sensing of Solar Wind Velocity Applying IPS Technique using MEXART Mejía-Ambriz.
8 th EVN Symposium: Exploring the universe with the real-time VLBI. 26 – 29 September 2006.Giuseppe Cimò – JIVE Interstellar Scintillation and IDV Twinkle,
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
Interstellar Scattering Joseph Lazio (Naval Research Laboratory) J. Cordes, A. Fey, S. Spangler, B. Dennison, B. Rickett, M. Goss, E. Waltman, M. Claussen,
Single Pulse Investigations at the Decameter Range O.M. Ulyanov 1, V.V. Zakharenko 1, V.S. Nikolaenko 1, A. Deshpande 2, M.V. Popov 3, V.A. Soglasnov 3,
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
The investigations of the solar wind with the large decametric radio telescopes of Ukraine Falkovych I.S. 1, Konovalenko A.A 1, Kalinichenko N.N. 1, Olyak.
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
TO THE POSSIBILITY OF STUDY OF THE EXTERNAL SOLAR WIND THIN STRUCTURE IN DECAMETER RADIO WAVES Marina Olyak Institute of Radio Astronomy, 4 Chervonopraporna,
Intrinsic Short Term Variability in W3-OH and W49N Hydroxyl Masers W.M. Goss National Radio Astronomy Observatory Socorro, New Mexico, USA A.A. Deshpande,
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
M.Nechaeva, Radiophysical Research Institute, Nizhni Novgorod, Russia Radio interferometer signal at raying of the solar wind plasma.
RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing, August RadioAstron space VLBI mission: early results. XXVIII GA IAU, Beijing,
Steven R. Spangler, Department of Physics and Astronomy
Scintillation in Extragalactic Radio Sources Marco Bondi Istituto di Radioastronomia CNR Bologna, Italy.
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
Pulsar Scintillation Arcs and the ISM Dan Stinebring Oberlin College Scattering and Scintillation In Radioastronomy Pushchino 19–23 June 2006.
Low frequency observation of both pulsar wind and magnetodipole radiation from switch on-off pulsars Ya.N. Istomin P.N. Lebedev Physical Institute, Moscow,
Coronal scattering under strong regular refraction Alexander Afanasiev Institute of Solar-Terrestrial Physics Irkutsk, Russia.
OH maser sources in W49N: probing differential anisotropic scattering with Zeeman pairs desh Raman Research Institute, Bangalore + Miller Goss, Eduardo.
Interstellar turbulent plasma spectrum from multi-frequency pulsar observations Smirnova T. V. Pushchino Radio Astronomy Observatory Astro Space Center.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
I.F.Malov Pushchino Radio Astronomy Observatory, Lebedev Physical Institute RUSSIA Do «magnetars» really exist? AXPs and SGRs Magnetars (dP.
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
Frequency Coverage and RFI Observations at Effelsberg K. Grypstra, R. Keller, Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
Projet O ptical S cintillation by E xtraterrestrial R efractors Moriond /03/2006 La matière cachée Fait-elle scintiller Les étoiles? Marc MONIEZ,
Three-Dimensional Power Spectra of GONG++ High- Cadence Magnetograms F. Hill, J. Bolding, R. Clark, K. Donaldson-Hanna, J. Harvey, G. Petrie, C. Toner.
Project P2445 – Four-Frequency High Precision Timing of a Millisecond Pulsar Ryan Shannon (PI, Graduate Student, Cornell University), with Jim Cordes,
Observations of SNR G at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC.
Spectrum and small-scale structures in MHD turbulence Joanne Mason, CMSO/University of Chicago Stanislav Boldyrev, CMSO/University of Madison at Wisconsin.
IPS Observations Using the Big Scanning Array of the Lebedev Physical Institute: Recent Results and Future Prospects I.V.Chashei, V.I.Shishov, S.A.Tyul’bashev,
Monitoring of interplanetary and ionosphere scintillations at the frequency 111MHz S.A.Tyul’bashev, V.I.Shishov, I.V.Chashei, I.A.Subaev Pushchino Radio.
Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Diffraction and polarization.
RFI Protection Activities in IAA RAS
Interplanetary scintillation of strong sources during the descending phase near the minimum of 23 solar activity cycle Chashei I1., Glubokova1,2 S., Glyantsev1,2.
Turbulence wave number spectra reconstruction
RFI Protection Activities in IAA RAS
S. Likhachev (1), L, Kogan(2), E. Fomalont(2), F. Owen(2)
Searching FRB with Jiamusi-66m Radio Telescope
Munetoshi Tokumaru (ISEE, Nagoya University)
“Astrometry through beer goggles” Adam Deller Swinburne University
Ten Years of Millisecond Pulsar Timing at Kalyazin
Science from Surveys Jim Condon NRAO, Charlottesville.
Steven R. Spangler University of Iowa
Improving Pulsar Timing
Series of high-frequency slowly drifting structure mapping the magnetic field reconnection M. Karlicky, A&A, 2004, 417,325.
XMM-Newton Observation of the composite SNR G0. 9+0
Observations of pulsar microstructure with the GMRT
Masers from the Early Universe
Polarization Properties of an Eclipsing Pulsar
GALACTIC ASTRONOMY (II): PULSARS
Presentation transcript:

Diffraction scintillation at 1.4 and 4.85GHz V.M.Malofeev, O.I.Malov, S.A.Tyul’bashev PRAO, Russia W.Sieber Hochschule Nederrhein, Germany A.Jessner, R.Wielebinski MPIfR, Germany

Introduction Most important characteristic of the turbulent interstellar medium is the three-dimensional spatial spectrum of the electron density fluctuations: a Gaussian or power law. The aim of our project was to obtain the form of turbulence spectrum for different regions of the sky and for pulsars which are at different distances.

Observations 100m RT in Effelsberg during 2-12th Sept pulsars at 1.4GHz and 6 at 4.85GHz Criteria: strong objects with good SNR, pulsars should clearly show scintillation to obtain dynamic spectra the total receiver bandwidht must be much broader then the decorrelation bandwidth of pulsars 1.4GHz: 30chan x 1.33MHz= 40MHz 4.85GHz: 8chan x 60MHz=480MHz two polarization; flux measurements every 30sec; duration of observations 1-10hours

PSR (1.41GHz) Example of dynamic spectra in the strong scintillation regime

PSR (1.4GHz; 7 Sept.) Example of dynamic spectra in the weak(?) scin.regime

PSR (1.4GHz) Scin. data; ACF time function; CCF frequency function; power spectrum; structure function

PSR (1.4GHz) 03 Sept. - strong scint; 10 Sept. - lensing effect

PSR (1.4GHz) Scint. data; ACF time function; CCF frequency function; power spectrum structure function

PSR (4.85GHz) Dynamic spectra in the weak scin. regime

PSR (4.85GHz) Dynamic spectra in the strong(?) scin.regime

PSR Scint. data; ACF time function CCF frequency function Power spectrum Structure function

Number of pulsars

Conclusion We have obtained scintillation data for 11 PSR at 1.4GHz and 5 PSR at 4.85GHz: the decorrelation time and bandwidth, power low index for spectra and structure function Possible lensing effect (focal spot effect) have been detected for a few pulsars near the critical frequency