1. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings.

Slides:



Advertisements
Similar presentations
1 DNA Replication نـَسْـــــخ الـ دنا THE MOLECULE BASIS OF INHERITANCE
Advertisements

DNA Replication نـَسْـــــخ الـ دنا THE MOLECULE BASIS OF INHERITANCE
1 Section A: DNA as the Genetic Material CHAPTER 16 THE MOLECULE BASIS OF INHERITANCE.
DNA Structure & Replication Chapter 15 continued Bedford County Public Schools – Jami N. Key.
DNA ( Deoxyribonucleic acid ) Site: Human DNA is present in the nucleus and mitochonria Function: carry genetic information. Structure: Human DNA consists.
DNA Replication.
AP Biology Chapter 16 part 2
1 Section A: DNA as the Genetic Material CHAPTER 16 THE MOLECULE BASIS OF INHERITANCE.
DNA REPLICATION We know we need to copy a cells DNA before a cell can divide, but how is DNA copied? There were 3 possible models for DNA copies to be.
 All cells undergo DNA replication and cell division in order to give rise to a new generation of cells Mitosis- Division of the nucleus of a eukaryotic.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Molecular Biochemistry (Bioc432) Part 2 Dr. Hani Choudhry
CHAPTER 16 THE MOLECULE BASIS OF INHERITANCE Section B: DNA Replication and Repair 1.During DNA replication, base pairing enables existing DNA strands.
DNA Replication Will Fagan IB Biology DNA Replication Cells must prepare for doubling the DNA content of a cell through the process of DNA replication.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Basic Principle: Base Pairing to a Template Strand Since the two strands of.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings.
Fig Figure 16.1 How was the structure of DNA determined?
NOTES: CH 16 (part 2) – DNA Replication and Repair.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA Replication chapter 16 continue DNA Replication a closer look p.300 DNA: Origins.
DNA Structure & Replication AP Biology. What is a Nucleotide?
DNA REPLICATION SBI4U Ms. Manning. DNA Replication  Produces two identical copies of the chromosome during S phase of interphase  Catalyzed by many.
Beyond Mendel - the molecular basis of inheritance, and DNA biology 1.
DNA REPLICATION. What does it mean to replicate? The production of exact copies of complex molecules, such as DNA molecules, that occurs during growth.
Animations/websites 878/student/animations/dna_replication/inde x.html
DNA Replication DNA Replication is a semiconservative process where the new DNA is copied onto a parental (conserved) strand. It takes place with surprising.
DNA REPLICATION TOPIC 3.4 & 7.2. Assessment Statements Explain DNA replication in terms of unwinding the double helix and separation of the strands.
3.4 & 7.2 DNA Replication Pp 16 – 19 & Pp 58 – 60 &
CHAPTER 16 THE MOLECULE BASIS OF INHERITANCE Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B: DNA Replication and Repair.
DNA Replication
Maurice Wilkins and Rosalind Franklin: X-ray crystallography DNA was helical in shape and the width of the helix was discovered (2nm). Copyright © 2002.
Photo 51 Rosalind Franklin Maurice Wilkins James D. Watson Francis Crick
DNA Replication Lecture 11 Fall Read pgs
Replication of DNA Before a cell can divide by mitosis or meiosis, it must first make a copy of its chromosomes. The DNA in the chromosomes is copied.
Warm Up: November 1, 2013  Homework: None  Due today: Enzyme lab if it was not turned in yesterday  Warm-Up: Fear Factor.
DNA Replication Ch 16 Unit Test: Ch
Forensic DNA Analysis DNA Replication. Lesson Overview Lesson Overview Identifying the Substance of Genes The Double-Helix Model The double-helix model.
7.2 DNA Replication Assessment Statements: I know that DNA replication occurs in a 5’ 3’ direction. I can explain the process of DNA replication in prokaryotes.
 Watson and Crick were the first to make a double-helical modle for the strucure of deoxyribonucleic acid or DNA.  DNA, or deoxyribonucleic acid, is.
DNA REPLICATION C T A A T C G GC A CG A T A T AT T A C T A 0.34 nm 3.4 nm (a) Key features of DNA structure G 1 nm G (c) Space-filling model T.
INTERACTIVE NOTES PGS CHROMOSOMES & DNA REPLICATION.
It takes E. coli less than an hour to copy each of the 5 million base pairs in its single chromosome and divide to form two identical daughter cells. A.
DNA: The Molecule of Heredity Chemical nature of DNA –Chromosomes are composed of protein and deoxyribonucleic acid –Gene – functional segment of DNA located.
1.DNA MOLECULES ARE LONG POLYMERS MADE UP OF REPEATING NUCLEOTIDES.
Chapter 16.2 DNA Replication and Repair. Recap Nitrogen base pairings A – T C – G Adenine and Guanine are purines -2 rings Cytosine and Thymine are pyrimidines.
DNA Replication How does each cell have the same DNA? How is a prokaryote different than a eukaryote?
DNA Replication the big event during S phase. The Animation hill.com/sites/ /student_view0/chapter14/animations.html#
DNA Replication.
General Animal Biology
DNA Replication.
DNA REPLICATION.
DNA Replication.
Replication of DNA.
copyright cmassengale
DNA Structure & Replication
copyright cmassengale
DNA Replication.
BioFlix® DNA Replication Slide Show
copyright cmassengale
5 end 3 end 3 end 5 end Hydrogen bond 3.4 nm 1 nm 0.34 nm (a)
DO NOW: Is it a hydrolysis or dehydration synthesis
KEY CONCEPT DNA replication copies the genetic information of a cell.
DNA REPLICATION.
KEY CONCEPT DNA replication copies the genetic information of a cell.
DNA: The Molecule of Heredity
BioFlix® DNA Replication Slide Show
DNA Replication.
The Molecular Basis of Inheritance
copyright cmassengale
Dna replication SBI4U.
General Animal Biology
Presentation transcript:

1

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

4 When a cell copies a DNA molecule, each strand serves as a template for ordering nucleotides into a new complimentary strand.When a cell copies a DNA molecule, each strand serves as a template نموذج for ordering nucleotides into a new complimentary strand الجانب المُكمِّل. –Nucleotides line up along the template strand according to the base-pairing rules. –Nucleotides line up تـَتـَراص along the template strand according to the base-pairing rules. –The nucleotides are linked to form new strands (complementary). Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

5 Semiconservative replication (the most common and accepted by Watson and Crick). The double helix replicates each of the daughter molecules and will have one old strand and one newly made strand.Semiconservative replication (the most common and accepted by Watson and Crick). The double helix replicates each of the daughter molecules and will have one old strand and one newly made strand. The other two models are the conservative and the dispersive modelsThe other two models are the conservative and the dispersive models

1.During DNA replication, base pairing enables existing DNA strands to serve as templates for new complimentary strands 1.During DNA replication, base pairing إزدواج القواعد enables existing DNA strands to serve as templates نموذج/قالب for new complimentary strands الجانب المُكمِّل 2.Several enzymes and other proteins carry out DNA replication: Helicase,Primase,Polymerase, Ligase. The ends of DNA molecules are replicated by a special mechanism.

It takes E. coli less than an hour to copy each of the 5 million base pairs in its single chromosome and divide to form two identical daughter cells.It takes E. coli less than an hour to copy each of the 5 million base pairs in its single chromosome and divide to form two identical daughter cells. A human cell can copy its 6 billion base pairs and divide into daughter cells in only a few hours.A human cell can copy its 6 billion base pairs and divide into daughter cells in only a few hours. This process is remarkably accurate, with only one error per billion nucleotides.This process is remarkably accurate, with only one error per billion nucleotides. A helicase; untwists يَلغي الإلتفاف and separates the template DNA strands at the replication fork.A helicase; untwists يَلغي الإلتفاف and separates the template DNA strands at the replication fork. Single-strand binding proteins; keep the unpaired template strands apart منفصلين during replication.Single-strand binding proteins; keep the unpaired template strands apart منفصلين during replication. A large team of enzymes and other proteins carries out DNA replication: The Replication Mechanism

In eukaryotes, there may be hundreds or thousands of bubbles () per chromosome.In eukaryotes, there may be hundreds or thousands of bubbles ( each has origin sites for replication ) per chromosome. –At the origin sites, the DNA strands separate forming a replication “bubble” with replication forks at each end. –At the origin sites, the DNA strands separate forming a replication “bubble” with replication forks شوكة النسخ at each end. –The replication bubbles elongate as the DNA is replicated and eventually fuse. –The replication bubbles elongate تستطيل as the DNA is replicated and eventually fuse تندمج مع بعضها. The replication of a DNA molecule begins at special site called origin of replication مـنشأ التضاعف which is a single specific sequence of nucleotides that is recognized by the replication enzymes.The replication of a DNA molecule begins at special site called origin of replication مـنشأ التضاعف which is a single specific sequence of nucleotides that is recognized by the replication enzymes. Replication enzymes separate the strands, forming a replication “bubble” فقعة التضاعف.Replication enzymes separate the strands, forming a replication “bubble” فقعة التضاعف. –Replication proceeds in both directions until the entire molecule is copied.

9 Primer: (a short segment of RNA, 10 nucleotides long) is required to start a new chain.Primer: مُبديء (a short segment of RNA, 10 nucleotides long) is required to start a new chain. Primase: () links ribonucleotides that are complementary to the DNA template into the primer.Primase: (an RNA polymerase) links ribonucleotides that are complementary to the DNA template into the primer. DNA polymerases: catalyze the elongation of new DNA at a replication fork. After formation of the primer, DNA polymerases can add deoxyribonucleotides to the 3’ end of the ribonucleotide chain.DNA polymerases: catalyze the elongation of new DNA at a replication fork. After formation of the primer, DNA polymerases can add deoxyribonucleotides to the 3’ end of the ribonucleotide chain. Another DNA polymerase later replaces the primer ribonucleotides with deoxyribonucleotides complimentary to the template.Another DNA polymerase later replaces the primer ribonucleotides with deoxyribonucleotides complimentary to the template.

Source :

11 The other parental strand ( ), the lagging strand, is copied away from the fork in short segments (Okazaki fragments ).The other parental strand (5’->3’ into the fork), the lagging strand, is copied away from the fork in short segments (Okazaki fragments قـِطـَع صغيرة). Okazaki fragments ( ) are joined by DNA ligase to form the sugar- phosphate backbone of a single DNA strand.Okazaki fragments (each about nucleotides) are joined by DNA ligase الإنزيم الرابط to form the sugar- phosphate backbone of a single DNA strand. DNA polymerases can only add nucleotides to the free 3’ end of a growing DNA strand.DNA polymerases can only add nucleotides to the free 3’ end of a growing DNA strand. A new DNA strand can only elongate in the 5’->3’ direction.A new DNA strand can only elongate in the 5’->3’ direction. At the replication fork, one parental strand (), the leading strand, can be used by polymerases as a template for a continuous complimentary strand.At the replication fork, one parental strand (3’-> 5’ into the fork), the leading strand, can be used by polymerases as a template for a continuous complimentary strand.

Source :

Step 1 Helicases: Enzymes that separate the DNA strandsHelicases: Enzymes that separate the DNA strands Helicase move along the strands and breaks the hydrogen bonds between the complimentary nitrogen basesHelicase move along the strands and breaks the hydrogen bonds between the complimentary nitrogen bases Replication Fork: the Y shaped region that results from the separation of the strandsReplication Fork: the Y shaped region that results from the separation of the strands Step 2 DNA Polymerase: enzymes that add complimentary nucleotides.DNA Polymerase: enzymes that add complimentary nucleotides. Nucleotides are found floating freely inside the nucleusNucleotides are found floating freely inside the nucleus Covalent bonds form between the phosphate group of one nucleotide and the deoxyribose of anotherCovalent bonds form between the phosphate group of one nucleotide and the deoxyribose of another Hydrogen bonds form between the complimentary nitrogen basesHydrogen bonds form between the complimentary nitrogen bases Step 3 DNA polymerases finish replicating the DNA and fall off.DNA polymerases finish replicating the DNA and fall off. The result is two identical DNA molecules that are ready to move to new cells in cell division.The result is two identical DNA molecules that are ready to move to new cells in cell division. Semi-Conservative Replication: this type of replication where one strand is from the original molecule and the other strand is newSemi-Conservative Replication: this type of replication where one strand is from the original molecule and the other strand is new

The strands in the double helix are antiparallel.The strands in the double helix are antiparallel متوازيين و متضادين فى الإتجاه. The sugar-phosphate backbones run in opposite directions.The sugar-phosphate backbones run in opposite directions. –Each DNA strand has a 3’ end with a free OH group attached to deoxyribose and a 5’ end with a free phosphate group attached to deoxyribose. –The 5’ -> 3’ direction of one strand runs counter to مُعاكس لـ the 3’ -> 5’ direction of the other strand. Each strand is making its own new strand.Each strand is making its own new strand. DNA synthesis is occurring in two different directionsDNA synthesis is occurring in two different directions One strand is being made towards the replication fork and the other is being made away from the fork. The strand being made away from the fork has gaps.One strand is being made towards the replication fork and the other is being made away from the fork. The strand being made away from the fork has gaps. Gaps are later joined by another enzyme, DNA ligaseGaps are later joined by another enzyme, DNA ligase

The two DNA-strands separate forming replication bubbles. Each strand functions as a template for synthesizing new complementary & lagging strands via primers, polymerase and ligase. G CT A A T G G TATAC C G TATAC C G CT A A T G Templates Polymerase Complementary (leading) strand Lagging strand (complementary) Primer 53 Okazaki fragments Ligase

16 Fig , Page البـَـــدْء الإستطالة

Helicase: untwists the double helix to separate the DNA strands by forming replication bubbles.Helicase: untwists the double helix to separate the DNA strands by forming replication bubbles. Replication enzymes: separates DNA strands, forming a replication “bubble”.Replication enzymes: separates DNA strands, forming a replication “bubble”. Replication bubble: formed at the origin sites of replication as DNA strands separate, and hence, replication forks formed at each end.Replication bubble: formed at the origin sites of replication as DNA strands separate, and hence, replication forks formed at each end. Replication site: it is also called origin of replication which is a single specific sequence of nucleotides that is recognized by the replication enzymes and at which replication starts.Replication site: it is also called origin of replication which is a single specific sequence of nucleotides that is recognized by the replication enzymes and at which replication starts. Primer: is a short piece of RNA (10 nucleotide long) which is synthesised by primase and used to initiate the leading strands of the new DNA.Primer: is a short piece of RNA (10 nucleotide long) which is synthesised by primase and used to initiate the leading strands of the new DNA. DNA-polymerase: builds up the new DNA strand by adding nucleotides to the primer (from 5’ to 3’ end).DNA-polymerase: builds up the new DNA strand by adding nucleotides to the primer (from 5’ to 3’ end). Leading strand: the elongation strand (5’ 3’ into the fork) that initiate the new DNA after recognizing the sequence of the primer by special proteins.Leading strand: the elongation strand (5’ 3’ into the fork) that initiate the new DNA after recognizing the sequence of the primer by special proteins. Lagging strand: Is the other parental strand (5’ 3’ into the fork), is copied away from the fork in short segments (Okazaki fragments).Lagging strand: Is the other parental strand (5’ 3’ into the fork), is copied away from the fork in short segments (Okazaki fragments). Okazaki fragments: the newly formed segments (5’ 3’, away from the fork) then, form the lagging strand when connected by ligase towards the fork.Okazaki fragments: the newly formed segments (5’ 3’, away from the fork) then, form the lagging strand when connected by ligase towards the fork. DNA-ligase: joins the Okazaki fragments of the newly formed bases to form the new lagging DNA strand.DNA-ligase: joins the Okazaki fragments of the newly formed bases to form the new lagging DNA strand.